Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (8): 898-906.DOI: 10.3773/j.issn.1005-264x.2010.08.002
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
HAO Yan-Bin, WANG Yan-Fen*(), CUI Xiao-Yong
Received:
2009-11-18
Accepted:
2009-11-18
Online:
2010-11-18
Published:
2010-09-28
Contact:
WANG Yan-Fen
HAO Yan-Bin, WANG Yan-Fen, CUI Xiao-Yong. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China[J]. Chin J Plant Ecol, 2010, 34(8): 898-906.
Fig. 1 Variations of precipitation, soil water content (0-20 cm depth) (A), air temperature and soil temperature (0-5 cm depth) (B) during 2004-2006 growth seasons over Leymus chinensis steppe of Inner Mongolia.
年份 Year | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 5-9月 May-Sept. | |
---|---|---|---|---|---|---|---|
2004 | 降雨量 Precipitation (mm) | 20.0 | 75.0 | 60.5 | 120.8 | 58.5 | 334.8 |
空气温度 Air temperature (℃) | 11.0 ± 4.6 | 17.5 ± 3.0 | 18.0 ± 3.3 | 15.5 ± 3.3 | 11.2 ± 4.2 | 14.7 ± 4.8 | |
土壤温度 Soil temperature (℃) | 13.5 ± 3.1 | 20.3 ± 3.3 | 21.2 ± 3.1 | 18.1 ± 2.6 | 13.0 ± 3.0 | 17.2 ± 4.5 | |
2005 | 降雨量 Precipitation (mm) | 14.6 | 38.3 | 46.1 | 24.6 | 2.4 | 126.0 |
空气温度 Air temperature (℃) | 10.2 ± 4.7 | 17.3 ± 3.2 | 19.5 ± 3.2 | 18.3 ± 3.3 | 12.4 ± 4.0 | 15.5 ± 5.2 | |
土壤温度 Soil temperature (℃) | 12.6 ± 3.4 | 19.3 ± 3.0 | 21.1 ± 2.9 | 20.1 ± 2.6 | 15.8 ± 2.7 | 17.8 ± 4.3 | |
2006 | 降雨量 Precipitation (mm) | 15.0 | 76.0 | 122.9 | 21.9 | 39.0 | 274.8 |
空气温度 Air temperature (℃) | 11.9 ± 4.0 | 16.1 ± 3.4 | 18.6 ± 2.2 | 19.3 ± 2.1 | 11.3 ± 4.8 | 15.5 ± 4.8 | |
土壤温度 Soil temperature (℃) | 14.1 ± 3.0 | 18.9 ± 3.5 | 22.2 ± 1.4 | 21.8 ± 1.9 | 12.4 ± 3.7 | 18.0 ± 4.8 |
Table 1 Monthly total precipitation, average air temperature and 0-5 cm depth soil temperature during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia (mean ± SD)
年份 Year | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 5-9月 May-Sept. | |
---|---|---|---|---|---|---|---|
2004 | 降雨量 Precipitation (mm) | 20.0 | 75.0 | 60.5 | 120.8 | 58.5 | 334.8 |
空气温度 Air temperature (℃) | 11.0 ± 4.6 | 17.5 ± 3.0 | 18.0 ± 3.3 | 15.5 ± 3.3 | 11.2 ± 4.2 | 14.7 ± 4.8 | |
土壤温度 Soil temperature (℃) | 13.5 ± 3.1 | 20.3 ± 3.3 | 21.2 ± 3.1 | 18.1 ± 2.6 | 13.0 ± 3.0 | 17.2 ± 4.5 | |
2005 | 降雨量 Precipitation (mm) | 14.6 | 38.3 | 46.1 | 24.6 | 2.4 | 126.0 |
空气温度 Air temperature (℃) | 10.2 ± 4.7 | 17.3 ± 3.2 | 19.5 ± 3.2 | 18.3 ± 3.3 | 12.4 ± 4.0 | 15.5 ± 5.2 | |
土壤温度 Soil temperature (℃) | 12.6 ± 3.4 | 19.3 ± 3.0 | 21.1 ± 2.9 | 20.1 ± 2.6 | 15.8 ± 2.7 | 17.8 ± 4.3 | |
2006 | 降雨量 Precipitation (mm) | 15.0 | 76.0 | 122.9 | 21.9 | 39.0 | 274.8 |
空气温度 Air temperature (℃) | 11.9 ± 4.0 | 16.1 ± 3.4 | 18.6 ± 2.2 | 19.3 ± 2.1 | 11.3 ± 4.8 | 15.5 ± 4.8 | |
土壤温度 Soil temperature (℃) | 14.1 ± 3.0 | 18.9 ± 3.5 | 22.2 ± 1.4 | 21.8 ± 1.9 | 12.4 ± 3.7 | 18.0 ± 4.8 |
Fig. 2 Seasonal variations of gross primary productivity (GPP) and ecosystem respiration (Re) during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia.
Fig. 3 Seasonal variations of daytime (photosynthetic active radiation (PAR) > 0), nighttime (PAR = 0) and diurnal integrated net ecosystem during 2004-2006 growth seasons over the Leymus chinensis steppe of Inner Mongolia.
Fig. 5 Effects of soil water content and gross primary productivity (GPP) at a 20 cm-soil depth (θ) on the Q10 and R10 parameters in Van’t Hoff model.
土壤含水量 Soil water content (m3·m-3) | R10 | Q10 | R2 | 平均土壤温度 Average soil temperature Ts (℃) | p |
---|---|---|---|---|---|
> 0.2 | 1.09 ± 0.19 | 1.57 ± 0.36 | 0.25 | 17.14 | 0.08 |
0.19-0.18 | 0.66 ± 0.11 | 2.19 ± 0.46 | 0.41 | 16.60 | 0.04 |
0.17-0.16 | 0.54 ± 0.04 | 2.48 ± 0.22 | 0.72 | 14.02 | 0.04 |
0.15-0.14 | 0.68 ± 0.06 | 1.67 ± 0.21 | 0.10 | 15.64 | 0.07 |
0.13-0.12 | 0.68 ± 0.04 | 1.65 ± 0.09 | 0.40 | 18.82 | 0.04 |
0.11-0.10 | 0.40 ± 0.04 | 2.45 ± 0.23 | 0.63 | 18.57 | 0.04 |
0.09-0.08 | 0.37 ± 0.03 | 1.87 ± 0.14 | 0.57 | 16.53 | 0.10 |
< 0.07 | 0.30 ± 0.04 | 1.56 ± 0.21 | 0.32 | 18.24 | 0.10 |
Table 2 Effects of soil water content at the 0.2 m depth (θ) on the parameters in the Van’t Hoff model over the Leymus chinensis steppe of Inner Mongolia
土壤含水量 Soil water content (m3·m-3) | R10 | Q10 | R2 | 平均土壤温度 Average soil temperature Ts (℃) | p |
---|---|---|---|---|---|
> 0.2 | 1.09 ± 0.19 | 1.57 ± 0.36 | 0.25 | 17.14 | 0.08 |
0.19-0.18 | 0.66 ± 0.11 | 2.19 ± 0.46 | 0.41 | 16.60 | 0.04 |
0.17-0.16 | 0.54 ± 0.04 | 2.48 ± 0.22 | 0.72 | 14.02 | 0.04 |
0.15-0.14 | 0.68 ± 0.06 | 1.67 ± 0.21 | 0.10 | 15.64 | 0.07 |
0.13-0.12 | 0.68 ± 0.04 | 1.65 ± 0.09 | 0.40 | 18.82 | 0.04 |
0.11-0.10 | 0.40 ± 0.04 | 2.45 ± 0.23 | 0.63 | 18.57 | 0.04 |
0.09-0.08 | 0.37 ± 0.03 | 1.87 ± 0.14 | 0.57 | 16.53 | 0.10 |
< 0.07 | 0.30 ± 0.04 | 1.56 ± 0.21 | 0.32 | 18.24 | 0.10 |
年份 Year | 日平均GPP Daily average GPP | 日最大GPP Daily maximal GPP | 日平均Re Daily average Re | 日最大Re Daily maximal Re | 日平均NEE Daily average NEE | 累积的NEE Accumulated NEE | 累积的GPP Accumulated GPP | 累积的Re Accumulated Re |
---|---|---|---|---|---|---|---|---|
2004 | 1.91 ± 0.40 | 4.89 | 1.17 ± 0.36 | 1.99 | -0.04 ± 0.86 | -114 | 294 | 180 |
2005 | 0.65 ± 0.26 | 1.53 | 0.85 ± 0.31 | 1.38 | 0.51 ± 0.26 | 30 | 102 | 132 |
2006 | 0.81 ± 0.23 | 3.01 | 1.04 ± 0.37 | 1.77 | 0.70 ± 0.28 | 35 | 123 | 158 |
Table 3 Variations of daily average gross primary productivity (GPP, g C·m-2·d-1), daily maximal GPP (g C·m-2·d-1), ecosystem respiration (Re, g C·m-2·d-1), accumulated NEE (g C·m-2·a-1), GPP and Re (mean ± SD)
年份 Year | 日平均GPP Daily average GPP | 日最大GPP Daily maximal GPP | 日平均Re Daily average Re | 日最大Re Daily maximal Re | 日平均NEE Daily average NEE | 累积的NEE Accumulated NEE | 累积的GPP Accumulated GPP | 累积的Re Accumulated Re |
---|---|---|---|---|---|---|---|---|
2004 | 1.91 ± 0.40 | 4.89 | 1.17 ± 0.36 | 1.99 | -0.04 ± 0.86 | -114 | 294 | 180 |
2005 | 0.65 ± 0.26 | 1.53 | 0.85 ± 0.31 | 1.38 | 0.51 ± 0.26 | 30 | 102 | 132 |
2006 | 0.81 ± 0.23 | 3.01 | 1.04 ± 0.37 | 1.77 | 0.70 ± 0.28 | 35 | 123 | 158 |
[1] |
Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.
DOI URL PMID |
[2] | Baldocchi DD (2003). Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique. Global Change Biology, 9, 478-492. |
[3] | Bhupinderpal-Singh, Nordgren A, Ottossonlofvenius M, Hogberg MN, Mellander PE, Hogberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observation beyond the first year. Plant, Cell & Environment, 26, 1287-1296. |
[4] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[5] |
Curiel Yuste J, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23, 1263-1270.
URL PMID |
[6] | Davidson EA, Delc E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[7] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
URL PMID |
[8] | Falge E, Baldocchi DD, Richard O, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69. |
[9] | Falge E, Pilegaard K, Aubinet M, Bernhofer C, Clement R, Granier A, Kowalski AS, Moors EJ, Pileqarrd K, Rannik U, Rebmann C (2003). A model-based study of carbon fluxes at ten European forest sites. In: Valentinin R ed. Ecological Studies Vol.163, Fluxes of Carbon, Water and Energy of European Forest. Springer-Verlag, Berlin.. |
[10] | Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182. |
[11] | Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143, 123-145. |
[12] | Hartely IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK (2006). The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements. Global Change Biology, 12, 1954-1968. |
[13] |
Högberg P, Nordgren A, Buchmann N, Taylor AF, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
URL PMID |
[14] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] | Hao Y, Wang Y, Mei XR, Huang X, Cui XY, Zhou XQ, Niu HS (2008). CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecologia, 32, 133-143. |
[16] | Huang XZ (黄祥忠), Hao YB (郝彦宾), Wang YF (王艳芬), Zhou XQ (周小奇), Han X (韩喜), He JJ (贺俊杰) (2006). Impact of extreme drought on the ecosystem exchange from Leymus chinensis steppe in Xilin River Basin, China. Journal of Plant Ecology (Chinese Version) (植物生态学报) 30, 894-900. (in Chinese with English abstract) |
[17] | Ilstedt U, Nordgren A, Malmer A (2001). Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biology and Biochemistry, 32, 1591-1599. |
[18] | IPCC (Intergovernmental Panel on Climate Change) (2007). Fourth Assessment Report of Working Group III: Summary for Policymakers. Cambridge University Press, Cambridge, UK. |
[19] | Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z (2006). Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 9, 1128-1144. |
[20] | Krishnan P, Black TA, Grant NJ, Barr AG, Hogg TH, Jassal RS, Morgenstern K (2006). Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agricultural and Forest Meteorology, 139, 208-223. |
[21] | Kutsch LW, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168. |
[22] | Liu X, Wan S, Su B, Hui D, Luo Y (2002). Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240, 213-233. |
[23] |
Luo Y, Wan S, Hui D, Wallace L (2001). Acclimatization of soil respiration to warming in a tallgrass prairie. Nature, 413, 622-625.
URL PMID |
[24] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology and Biochemistry, 34, 1785-1795. |
[25] | Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim HS, Johnsen KH, Katul GG, Oren R (2005). Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biology, 11, 421-434. |
[26] | Rachhpal SJ, Black TA, Michael DN, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14, 1-14. |
[27] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[28] | Reichstein M, Tenhunen JD, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2003). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean sites: revision of current hypothesis? Global Change Biology, 8, 999-1017. |
[29] | Savage KE, Davidson EA (2001). Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15, 337-350. |
[30] | Thierron V, Laudelout H (1996). Contribution of root respiration to total soil CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research, 26, 1142-1148. |
[31] | Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339. |
[32] | Van’t Hoff JH (1898). Lectures on Theoretical and Physical Chemistry. Part I. Chemical Dynamics. Edward Arnold, London. |
[33] | Wang WQ (王维强), Ge QS (葛全胜) (1993). Greenhouse effect’s impact on China’s social economic development. Science and Technology Review (科技导报), (3), 59-61. (in Chinese) |
[34] | Xu L, Baldocchi DD (2004). Seasonal variation in carbon dioxide exchange over Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 1232, 79-96. |
[35] | Xu M, Qi Y (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687-697. |
[1] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[2] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[3] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[4] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[5] | YU Jun-Rui, WAN Chun-Yan, ZHU Shi-Dan. Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests [J]. Chin J Plant Ecol, 2023, 47(11): 1576-1584. |
[6] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
[7] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[8] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[9] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[10] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[11] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[12] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[13] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[14] | Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests [J]. Chin J Plant Ecol, 2022, 46(1): 102-113. |
[15] | Fei LI, Ming-Wei SUN, Shang-Zhi ZHONG, Wen-Zheng SONG, Xiao-Yue ZHONG, Wei SUN. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration [J]. Chin J Plant Ecol, 2022, 46(1): 74-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn