Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (10): 1015-1027.DOI: 10.17521/cjpe.2016.0048
Special Issue: 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
Chun-Li LI1,2, Qi LI1, Liang ZHAO1, Xin-Quan ZHAO1,*
Online:
2016-10-10
Published:
2016-11-02
Contact:
Xin-Quan ZHAO
Chun-Li LI, Qi LI, Liang ZHAO, Xin-Quan ZHAO. Responses of plant community biomass to nitrogen and phosphorus additions in natural and restored grasslands around Qinghai Lake Basin[J]. Chin J Plant Ecol, 2016, 40(10): 1015-1027.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0048
土壤深度 Soil depth (cm) | 草地类型 Grassland type | pH | 容重 Bulk density (g·m-3) | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
0-10 | NG | 8.02 ± 0.03 | 0.73 ± 0.02 | 54.84 ± 1.52 | 5.76 ± 0.09 | 0.74 ± 0.02 |
RG | 8.34 ± 0.01 | 0.75 ± 0.02 | 31.74 ± 0.95 | 2.94 ± 0.06 | 0.80 ± 0.02 | |
10-20 | NG | 8.33 ± 0.03 | 0.80 ± 0.05 | 41.04 ± 1.19 | 4.27 ± 0.15 | 0.71 ± 0.01 |
RG | 8.51 ± 0.02 | 0.85 ± 0.05 | 26.23 ± 0.61 | 2.82 ± 0.07 | 0.61 ± 0.02 | |
20-30 | NG | 8.42 ± 0.02 | 0.85 ± 0.03 | 29.44 ± 1.54 | 3.06 ± 0.13 | 0.62 ± 0.04 |
RG | 8.65 ± 0.02 | 1.07 ± 0.04 | 24.21 ± 1.59 | 2.18 ± 0.08 | 0.63 ± 0.03 |
Table 1 Chemical and physical properties of the soil around Qinghai Lake Basin (mean ± SE, n = 6)
土壤深度 Soil depth (cm) | 草地类型 Grassland type | pH | 容重 Bulk density (g·m-3) | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
0-10 | NG | 8.02 ± 0.03 | 0.73 ± 0.02 | 54.84 ± 1.52 | 5.76 ± 0.09 | 0.74 ± 0.02 |
RG | 8.34 ± 0.01 | 0.75 ± 0.02 | 31.74 ± 0.95 | 2.94 ± 0.06 | 0.80 ± 0.02 | |
10-20 | NG | 8.33 ± 0.03 | 0.80 ± 0.05 | 41.04 ± 1.19 | 4.27 ± 0.15 | 0.71 ± 0.01 |
RG | 8.51 ± 0.02 | 0.85 ± 0.05 | 26.23 ± 0.61 | 2.82 ± 0.07 | 0.61 ± 0.02 | |
20-30 | NG | 8.42 ± 0.02 | 0.85 ± 0.03 | 29.44 ± 1.54 | 3.06 ± 0.13 | 0.62 ± 0.04 |
RG | 8.65 ± 0.02 | 1.07 ± 0.04 | 24.21 ± 1.59 | 2.18 ± 0.08 | 0.63 ± 0.03 |
Fig. 1 Effects of nitrogen and phosphorus additions on the contents of soil NO3--N (A, C) and available phosphorus (B, D) in the natural alpine grassland (NG) and restored grassland (RG) (mean ± SE). ***, p < 0.001.
Fig. 2 Effects of nitrogen and phosphorus additions on aboveground biomass of grass and forb in the natural grassland (A) and restored grassland (B) (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
草地类型 Grassland type | 氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||||
禾草生物量 Grass biomass | NG | 25.350 | < 0.001 | 9.036 | 0.007 | 0.168 | 0.686 | |||
RG | 81.215 | < 0.001 | 0.044 | 0.836 | 0.149 | 0.704 | ||||
禾草百分比 Grass percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
杂类草生物量 Forb biomass | NG | 0.196 | 0.663 | 0.215 | 0.648 | 0.007 | 0.934 | |||
RG | 4.908 | 0.039 | 2.072 | 0.165 | 2.792 | 0.110 | ||||
杂类草百分比 Forb percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
地上生物量 Aboveground biomass | NG | 28.837 | < 0.001 | 7.113 | 0.015 | 0.685 | 0.418 | |||
RG | 174.985 | < 0.001 | 0.089 | 0.769 | 0.002 | 0.969 | ||||
地下生物量 Belowground biomass | NG | 0.636 | 0.435 | 0.526 | 0.477 | 0.205 | 0.655 | |||
RG | 1.282 | 0.271 | 0.000 | 0.989 | 0.031 | 0.862 | ||||
总生物量 Total biomass | NG | 1.117 | 0.303 | 0.725 | 0.404 | 0.241 | 0.629 | |||
RG | 14.692 | < 0.01 | 0.004 | 0.953 | 0.038 | 0.847 |
Table 2 Two-way ANOVA of the effects of nitrogen and phosphorous additions on plant community biomass and percentage contribution of different functional groups
草地类型 Grassland type | 氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||||
禾草生物量 Grass biomass | NG | 25.350 | < 0.001 | 9.036 | 0.007 | 0.168 | 0.686 | |||
RG | 81.215 | < 0.001 | 0.044 | 0.836 | 0.149 | 0.704 | ||||
禾草百分比 Grass percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
杂类草生物量 Forb biomass | NG | 0.196 | 0.663 | 0.215 | 0.648 | 0.007 | 0.934 | |||
RG | 4.908 | 0.039 | 2.072 | 0.165 | 2.792 | 0.110 | ||||
杂类草百分比 Forb percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
地上生物量 Aboveground biomass | NG | 28.837 | < 0.001 | 7.113 | 0.015 | 0.685 | 0.418 | |||
RG | 174.985 | < 0.001 | 0.089 | 0.769 | 0.002 | 0.969 | ||||
地下生物量 Belowground biomass | NG | 0.636 | 0.435 | 0.526 | 0.477 | 0.205 | 0.655 | |||
RG | 1.282 | 0.271 | 0.000 | 0.989 | 0.031 | 0.862 | ||||
总生物量 Total biomass | NG | 1.117 | 0.303 | 0.725 | 0.404 | 0.241 | 0.629 | |||
RG | 14.692 | < 0.01 | 0.004 | 0.953 | 0.038 | 0.847 |
Fig. 3 Effects of nitrogen and phosphorus additions on aboveground biomass in the natural grassland (A), and effects of nitrogen addition on aboveground biomass (AGB) and total biomass (TB) (B) in the restored grassland (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 4 Comparisons of grass biomass (A), forb biomass (B), aboveground biomass (C), belowground biomass (D) and total biomass (C, D) between natural grassland (NG) and restored grassland (RG) under control and N addition treatments (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] | Ågren GI (2004). The C:N:P stoichiometry of autotrophs— Theory and observations.Ecology Letters, 7, 185-191. |
[2] | Ågren GI, Wetterstedt JÅ, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960. |
[3] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grassland.Global Change Biology, 16, 358-372. |
[4] | Bassin S, Schalajda J, Vogel A, Suter M (2012). Different types of sub-alpine grassland respond similarly to elevated nitrogen deposition in terms of productivity and sedge abundance.Journal of Vegetation Science, 23, 1024-1034. |
[5] | Best EP, Jacobs F (2001). Production, nutrient availability, and elemental balances of two meadows affected by different fertilization and water table regimes in The Netherlands.Plant Ecology, 155, 61-73. |
[6] | Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu CJ, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, DeCrappeo NM, Du GZ, Firn J, Hautier Y, Heckman RW, Hector A, HilleRisLambers J, Iribarne O, Klein JA, Knops JMH, La Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O’Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH (2014a). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 517. |
[7] | Borer ET, Seabloom EW, Mitchell CE, Cronin JP (2014b). Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland.Oikos, 123, 214-224. |
[8] | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993). Constraints of nutrient availability on primary production in two alpine tundra communities.Ecology, 74, 2085-2097. |
[9] | Bracken MES, Hillebrand H, Borer ET, Seabloom EW, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Harpole WS, Ngai JT (2015). Signatures of nutrient limitation and co-limitation: Responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions.Oikos, 124, 113-121. |
[10] | Carlsson G, Huss-Danell K (2003). Nitrogen fixation in perennial forage legumes in the field.Plant and Soil, 253, 353-372. |
[11] | Chapin FS III, Matson PA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer-Verlag, New York. |
[12] | Che DR (1990). Effects of phosphorus and nitrogen on cultivated grass yield Qinghai alpine grassland.Chinese Qinghai Journal of Animal and Veterinary Science, 1, 1-6.(in Chinese). [车敦仁 (1990). 青海高寒牧区栽培禾草施磷施氮的增产效应. 青海兽医畜牧杂志,1, 1-6.] |
[13] | Chen DD, Li Q, Zou XY, Zhao XQ, Xu SX, Cai H, Zou JR, Zhao L (2014). How did soil organic carbon and total nitrogen change after “Grain for Green” in the Qinghai-Lake farm?Acta Agretia Sinca, 22, 469-474.(in Chinese with English abstract) [陈懂懂, 李奇, 邹小艳, 赵新全, 徐世晓, 蔡海, 邹婧汝, 赵亮 (2014). 青海湖农场退耕还林草后的土壤碳氮变化. 草地学报,22, 469-474.] |
[14] | Chen Q, Hooper DU, Lin S (2011). Shifts in species composi- tion constrain restoration of over grazed grassland using nitrogen fertilization in Inner Mongolian steppe, China.PLOS ONE, 6, 1-10. |
[15] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters, 10, 1135-1142. |
[16] | Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley Y, Chu CJ, Cleland EE, Collins SL, Davies KF, Du GZ, Feng XH, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schutz M, Stevens CJ, Wedin DA, Yang LH (2015). Grassland productivity limited by multiple nutrients.Nature Plants, 1(7), 1-5. |
[17] | Fisher JB, Badgley G, Blyth E (2012). Global nutrient limitation in terrestrial vegetation. Global Biogeochemistry Cycles, 26, GB3007. doi: 10.1029/2011GB004252 |
[18] | Franzluebbers AJ, Stuedemann JA (2010). Surface soil changes during twelve years of pasture management in the Southern Piedmont USA.Soil Science Society of America Journal, 74, 2131-2141. |
[19] | Gao YZ, Chen Q, Lin S, Giese M, Brueck H (2011). Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China.Oecologia, 165, 855-864. |
[20] | Gibson R, Hewitt A, Sparling G, Bosch O (2000). Vegetation change and soil quality in Central Otago Tussock Grass- lands, New Zealand.Rangeland Journal, 22, 190-204. |
[21] | Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle.Nature, 451, 293-296. |
[22] | Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data.Forest Ecology and Management, 101, 37-55. |
[23] | Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB (2011). Nutrient co-limitation of primary producer communities.Ecology Letters, 14, 852-862. |
[24] | Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication.Science, 324, 636-638. |
[25] | Henry HAL, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006). Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland.Ecosystems, 9, 1066-1075. |
[26] | Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005). Confronting a biome crisis: Global disparities of habitat loss and protection.Ecology Letters, 8, 23-29. |
[27] | Jiang J, Zong N, Song MH, Shi PL, Ma WL, Fu G, Shen ZX, Zhang XZ, Ouyang H (2013). Responses of ecosystem respiration and its components to fertilization in an alpine meadow on the Tibetan Plateau.European Journal of Soil Biology, 56, 101-106. |
[28] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379. |
[29] | Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment.Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2047-2056. |
[30] | Li Q, Chen DD, Zhao L, Yang X, Xu SX, Zhao XQ (2016). More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field 13C pulse labeling.Science of Total Environment, 550, 17-26. |
[31] | Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ (2015). Plant functional diversity can be independent of species diversity: Observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLOS ONE, 10(8), ED136040. doi: 10. 1371/journal.pone.0136040. |
[32] | Li YK, Zhang FW, Lin L, Wang X, Cao GM, Guo XW, Han DR, Chen GC (2012). Spatiotemporal variation in soil nu- trient of Stipa purpurea steppe fenced in the Qinghai Lake Region.Chinese Journal of Applied and Environmental Biology, 18, 23-29.(in Chinese with English abstract)[李以康, 张发伟, 林丽, 王溪, 曹广民, 郭晓伟, 韩道瑞, 陈桂琛 (2012). 青海湖区紫花针茅草原封育导致的土壤养分时空变化特征. 应用与环境生物学报,18, 23-29.] |
[33] | Liao QL, Zhang XH, Li ZP, Pan GX, Smith P, Jin Y, Wu XM (2009). Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province.Global Change Biology, 15, 861-875. |
[34] | Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research-Atmospheres, 112, D22S05, doi: 10.1029/2006JD007990. |
[35] | Majdi H, Andersson P (2005). Fine root production and turn- over in a Norway spruce stand in northern Sweden: Effects of nitrogen and water manipulation.Ecosystems, 8, 191-199. |
[36] | Melillo JM, Field CB, Moldan B (2003). Interactions of the Major Biogeochemical Cycles: Global Change and Hu- man Impacts. Island Press, Washington D.C., USA. 320. |
[37] | Mooney HA, Vitousek PM, Matson PA (1987). Exchange of materials between terrestrial ecosystems and the atmosphere.Science, 238, 926-932. |
[38] | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
[39] | Newman EI (1973). Competition and diversity in herbaceous vegetation.Nature, 244, 310. |
[40] | Odum EP, Barrett GW (2005). Fundamentals of Ecology. 5th edn. Thomson Brooks/Cole, California. |
[41] | Ren J, Li XF (1992). Analysis of complex ecological system of the Qinghai Lake catchment.Journal of Lake Sciences, 4, 48-55.(in Chinese with English abstract)[任杰, 李幸福 (1992). 青海湖流域复合生态系统分析. 湖泊科学,4, 48-55.] |
[42] | Roscher C, Thein S, Schmid, Scherer-Lorenzen M (2008). Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years.Journal of Ecology, 96, 477-488. |
[43] | Schimel D, Melillo J, Tian HQ, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States.Science, 287, 2004-2006. |
[44] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle.Biogeochemistry, 48, 7-20. |
[45] | Scurlock JMO, Hall DO (1998). The global carbon sink: A grassland perspective.Global Change Biology, 8, 229-233. |
[46] | Scurlock JMO, Johnson K, Olson RJ (2002). Estimating net primary productivity from grassland biomass dynamics measurements.Global Change Biology, 8, 736-753. |
[47] | Song GH, Li LQ, Pan GX, Zhang Q (2005). Topsoil organic carbon storage of China and its loss by cultivation.Biogeochemistry, 74, 47-62. |
[48] | van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization.Journal of Ecology, 91, 1060-1070. |
[49] | Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource.New Phytologist, 157, 423-447. |
[50] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[51] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea—How can it occur?Biogeochemistry, 13, 87-115. |
[52] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implica- tions, and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15. |
[53] | Wang JS, Wang ZK, Zhang XZ, Zhang YJ, Ran CQ, Zhang JL, Chen BX, Zhang BS (2015). Response of Kobresia pygm- aea and Stipa purpurea grassland communities in northern tibet to nitrogen and phosphate addition.Mountain Research and Development, 35, 78-86. |
[54] | Wei XR, Shao MG, Fu XL, Horton R, Li Y, Zhang XC (2009). Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China.Biogeochemistry, 96, 149-162. |
[55] | Weiner J (1990). Asymmetric competition in plant populations.Trends in Ecology & Evolution, 5, 360-364. |
[56] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition.New Phytologist, 179, 428-439. |
[57] | Xie GD, Lu CX, Xiao Y, Zheng D (2003). The economic evaluation of grassland ecosystem services in Qinghai- Tibet Plateau.Journal of Mountain Science, 21, 50-55.(in Chinese with English abstract) [谢高地, 鲁春霞, 肖玉, 郑度 (2003). 青藏高原高寒草地生态系统服务价值评估. 山地学报,21, 50-55.] |
[58] | Xu DH, Fang XW, Zhang RY, Gao TP, Bu HY, Du GZ (2015). Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow.AoB PLANTS, 7, 1-12. |
[59] | Yang LC, Liu HC, Li CB, Li F, Xu WH, Zhou GY (2015). Effects of nitrogen, phosphorus and potassium fertilizer applications on plant community structure in a degraded alpine steppe.Chinese Journal of Ecology, 34, 25-32.(in Chinese with English abstract)[杨路存, 刘何春, 李长斌, 李璠, 徐文华, 周国英 (2015). 氮磷钾不同施肥配方对退化高寒草原植物群落结构的影响. 生态学杂志,34, 25-32.] |
[60] | Yang P (2009). Climate Change and Hydrological Response in Qinghai Lake. PhD dissertaion, Lanzhou University, Lanzhou, 13-17.(in Chinese with English abstract) [杨萍 (2009). 青海湖小冰期以来的气候变化及其水文效应. 博士学位论文, 兰州大学, 兰州, 13-17.] |
[61] | Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 38, 159-166.(in Chinese with English abstract) [杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报,38, 159-166.] |
[62] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands.Journal of Vegetation Science, 20, 177-184. |
[63] | Yu L, Song XL, Zhao JN, Wang H, Bai L, Yang DL (2015). Responses of plant diversity and primary productivity to nutrient addition in a Stipa baicalensis grassland, China.Journal of Integrative Agriculture, 14, 2099-2108. |
[64] | Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation.Global Ecology and Biogeography, 18, 11-18. |
[65] | Zhang YH, Loreau M, Lu XT, He NP, Zhang GM, Han XG (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland.Global Change Biology, 22, 1445-1455. |
[66] | Zhang YH, Lu XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe.Global Change Biology, 20, 3520-3529. |
[67] | Zhou GY, Chen GC, Zhao YL, Wang SZ, Sun J (2005). Comparative studies on the influence of chemical fertilizer application and enclosure on alpine steppes in Qinghai Lake area II—Seasonal and annual biomass dynamics.Pratacultural Science, 22(2), 59-63(in Chinese with English abstract).[周国英, 陈桂琛, 赵以莲, 王顺忠, 孙菁 (2005). 施肥和围栏封育对青海湖地区高寒草原影响的比较研究II: 地上生物量季节动态. 草业科学,22(2), 59-63.] |
[68] | Zhou ZY, Li FR, Chen SK, Zhang HR, Li GD (2011). Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland.Plant and Soil, 341, 257-268. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[3] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[4] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[5] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[8] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[9] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[10] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[11] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[12] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[13] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[14] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[15] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn