Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (9): 1128-1142.DOI: 10.17521/cjpe.2023.0219 cstr: 32100.14.cjpe.2023.0219
• Research Articles • Previous Articles Next Articles
FU Zhao-Qi1,2, HU Xu1,2, TIAN Qin-Rui1,2, GE Yan-Ling1,2, ZHOU Hong-Juan1,2, WU Xiao-Yun1,2, CHEN Li-Xin1,2,*()
Received:
2023-08-01
Accepted:
2024-01-16
Online:
2024-09-20
Published:
2024-01-22
Contact:
CHEN Li-Xin (Supported by:
FU Zhao-Qi, HU Xu, TIAN Qin-Rui, GE Yan-Ling, ZHOU Hong-Juan, WU Xiao-Yun, CHEN Li-Xin. Nocturnal sap flow characteristics of two typical forest tree species and responses to environmental factors in the loess region of West Shanxi, China[J]. Chin J Plant Ecol, 2024, 48(9): 1128-1142.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0219
Fig. 1 Diameter at breast height (DBH) distribution frequency of Robinia pseudoacacia plantation (A) and Quercus mongolica natural forest (B) in the loess region of West Shanxi.
树种 Species | 编号 No. of sample trees | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 冠幅面积 Crown area (m2) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
刺槐 R. pseudoacacia | R1 | 23.0 | 14.5 | 5.0 | 197.1 |
R2 | 25.0 | 14.5 | 17.5 | 226.5 | |
R3 | 12.0 | 10.0 | 2.0 | 66.4 | |
R4 | 18.7 | 13.5 | 14.0 | 139.4 | |
R5 | 8.5 | 10.5 | 0.6 | 37.3 | |
R6 | 15.3 | 13.0 | 4.0 | 99.7 | |
蒙古栎 Q. mongolica | Q1 | 18.0 | 10.8 | 14.0 | 99.4 |
Q2 | 13.0 | 10.5 | 8.7 | 55.3 | |
Q3 | 6.9 | 8.5 | 3.0 | 17.6 | |
Q4 | 19.2 | 10.1 | 5.0 | 111.6 | |
Q5 | 9.0 | 9.5 | 2.5 | 28.5 |
Table 1 Statistical table of sample trees of Robinia pseudoacacia and Quercus mongolica in the loess region of West Shanxi, China
树种 Species | 编号 No. of sample trees | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 冠幅面积 Crown area (m2) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
刺槐 R. pseudoacacia | R1 | 23.0 | 14.5 | 5.0 | 197.1 |
R2 | 25.0 | 14.5 | 17.5 | 226.5 | |
R3 | 12.0 | 10.0 | 2.0 | 66.4 | |
R4 | 18.7 | 13.5 | 14.0 | 139.4 | |
R5 | 8.5 | 10.5 | 0.6 | 37.3 | |
R6 | 15.3 | 13.0 | 4.0 | 99.7 | |
蒙古栎 Q. mongolica | Q1 | 18.0 | 10.8 | 14.0 | 99.4 |
Q2 | 13.0 | 10.5 | 8.7 | 55.3 | |
Q3 | 6.9 | 8.5 | 3.0 | 17.6 | |
Q4 | 19.2 | 10.1 | 5.0 | 111.6 | |
Q5 | 9.0 | 9.5 | 2.5 | 28.5 |
Fig. 2 Changes of soil water content at different soil depths of Robinia pseudoacacia plantation (A) and Quercus mongolica natural forest (B) in the loess region of West Shanxi.
Fig. 3 Variations of environmental factors during the observation period in the Robinia pseudoacacia plantation and Quercus mongolica forest in the loess area of West Shanxi. p < 0.05 represents the significant difference between daytime and nighttime environmental factors.
Fig. 4 Sap flow rate of Robinia pseudoacacia (A, B) and Quercus mongolica (C, D) of sample trees with different diameter at breast height (DBH) in the loess area of West Shanxi (mean ± SD). A, C represent daytime; B, D represent nighttime.
林分 Stand | 整日液流 Daily sap flow (mm) | 日间液流 Daytime sap flow (mm) | 夜间液流 Nighttime sap flow (mm) | 夜间液流占比 Proportion of nighttime sap flow (%) |
---|---|---|---|---|
刺槐人工林 Robinia pseudoacacia plantation | 0.42 ± 0.26a | 0.38 ± 0.23a | 0.03 ± 0.01a | 10.68 ± 1.05b |
蒙古栎天然林 Quercus mongolica forest | 0.31 ± 0.25b | 0.29 ± 0.16b | 0.02 ± 0.00b | 12.75 ± 1.50a |
Table 2 The t-test result of sap flux of different stand in the loess area of West Shanxi (mean ± SD)
林分 Stand | 整日液流 Daily sap flow (mm) | 日间液流 Daytime sap flow (mm) | 夜间液流 Nighttime sap flow (mm) | 夜间液流占比 Proportion of nighttime sap flow (%) |
---|---|---|---|---|
刺槐人工林 Robinia pseudoacacia plantation | 0.42 ± 0.26a | 0.38 ± 0.23a | 0.03 ± 0.01a | 10.68 ± 1.05b |
蒙古栎天然林 Quercus mongolica forest | 0.31 ± 0.25b | 0.29 ± 0.16b | 0.02 ± 0.00b | 12.75 ± 1.50a |
Fig. 5 Daily variations of stand sap flow for Robinia pseudoacacia plantation (A) and Quercus mongolica forest (B) and proportions of nocturnal sap flow to total daily sap flow (C) in the loess area of West Shanxi.
Fig. 6 Hourly evaluation and distribution (mean ± SD) of nocturnal transpiration (Tn) and stem water refilling (Re) to nighttime sap flow (QNighttime) in Robinia pseudoacacia (A, C) plantation and Quercus mongolica forest (B, D) and partitioning of QNighttime into Tn and Re in the loess area of West Shanxi.
Fig. 7 Predicted and observed nighttime sap flow curves of Robinia pseudoacacia plantation (A) and Quercus mongolica forest (B) based on the XGboost model on the test set on hourly scale in the loess area of West Shanxi. MAE, mean absolute error; MSE, mean-square error; RMSE, root mean square error; R2, the coefficient of determination.
Fig. 8 SHAP summary plot (A, B) and importance matrix (C, D) of Robinia pseudoacacia plantation and Quercus mongolica forest in the loess area of West Shanxi. QDaily, daily sap flow; RH, relative humidity; SWC, soil water content; Ta, air temperature; VPD, vapor pressure deficit; WS, wind speed.
Fig. 9 SHAP dependence plot of nighttime sap flow and environmental factors of Robinia pseudoacacia plantation (A-F) and Quercus mongolica forest (G-I) in the loess area of West Shanxi. QDaily, daily sap flow; RH, relative humidity; SWC, soil water content; Ta, air temperature; VPD, vapor pressure deficit; WS, wind speed.
[1] | An F, Cai J, Jiang ZM, Zhang YY, Lan GY, Zhang SX (2006). Refilling of embolism in the xylem of eight tree species and its relationship with pressure-volume parameters. Journal of Northwest A & F University (Natural Science Edition), 34(1), 38-44. |
[安锋, 蔡靖, 姜在民, 张远迎, 兰国玉, 张硕新 (2006). 八种木本植物木质部栓塞恢复特性及其与PV曲线水分参数的关系. 西北农林科技大学学报(自然科学版), 34(1), 38-44.] | |
[2] |
Buckley TN, Turnbull TL, Pfautsch S, Adams MA (2011). Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands. Ecology and Evolution, 1, 435-450.
DOI PMID |
[3] | Caird MA, Richards JH, Donovan LA (2007). Nighttime stomatal conductance and transpiration in C3and C4 plants. Plant Physiology, 143, 4-10. |
[4] | Cao QQ, Li JR, Xiao HJ, Cao YB, Xin ZM, Yang BM, Liu T, Yuan MT (2020). Sap flow of Amorpha fruticosa: implications of water use strategy in a semiarid system with secondary salinization. Scientific Reports, 10, 1-11. |
[5] | Chen T, Guestrin C (2016). XGBoost: a scalable tree boosting system. [2023-08-01]. https://dl.acm.org/doi/pdf/10.1145/2939672.2939785. |
[6] | Chen Z, Zhang ZQ, Sun G, Chen LX, Xu H, Chen SN (2020). Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 284, 107904. DOI: 10.1016/j.agrformet.2020.107904. |
[7] |
Daley MJ, Phillips NG (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed new England deciduous forest. Tree Physiology, 26, 411-419.
DOI PMID |
[8] | Deng WZ, Su Y, Dou ZN, Han X, Bai HR, He LL, Luo H, Wu HL (2022). Study on sap flow and its influencing factors of Fraxinus velutina in leaf-spreading stage. South China Forestry Science, 50(4), 11-16. |
[邓炜展, 苏雨, 窦占宁, 韩叙, 白浩荣, 贺露露, 罗欢, 吴海龙 (2022). 绒毛白蜡展叶期树干液流及其影响因子研究. 南方林业科学, 50(4), 11-16.] | |
[9] | Di N, Xi B, Clothier B, Wang Y, Li G, Jia L (2019). Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. Forest Ecology and Management, 448, 445-456. |
[10] | Di N, Yang SJ, Liu Y, Fan YX, Duan JE, Nadezhdina N, Li XM, Xi BY (2022). Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation. Agricultural Water Management, 274, 107984. DOI: 10.1016/j.agwat.2022.107984. |
[11] | Du S, Wang Y, Kume T, Zhang J, Otsuki K, Yamanaka N, Liu G (2011). Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10. |
[12] | Fan YX, Di N, Liu Y, Zhang YW, Duan J, Li X, Wang HH, Xi BY (2023). Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors. Chinese Journal of Plant Ecology, 47, 262-274. |
[范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野 (2023). 毛白杨茎干夜间液流时空动态及其环境影响因子. 植物生态学报, 47, 262-274.]
DOI |
|
[13] | Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007). What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27, 597-610. |
[14] | Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2005). Modeling canopy transpiration using time series analysis: a case study illustrating the effect of soil moisture deficit on Pinus taeda. Agricultural and Forest Meteorology, 130, 163-175. |
[15] | Fricke W (2019). Night-time transpiration—Favouring growth. Trends in Plant Science, 24, 311-317. |
[16] |
Granier A (1987). Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-319.
DOI PMID |
[17] | Guo XN, Shang GF, Tian Y, Jia X, Zha TS, Li C, Yang HC, Zhang XA (2021). Dynamics of nocturnal evapotranspiration and its biophysical controls over a desert shrubland of northwest China. Forests, 12, 1296. DOI: 10.3390/f12101296. |
[18] | Hayat M, Iqbal S, Zha T, Jia X, Qian D, Bourque CPA, Khan A, Tian Y, Bai Y, Liu P, Yang R (2021). Biophysical control on nighttime sap flow in Salix psammophila in a semiarid shrubland ecosystem. Agricultural and Forest Meteorology, 300, 108329. DOI: 10.1016/j.agrformet.2021.108329. |
[19] | Karpul RH, West AG (2016). Wind drives nocturnal, but not diurnal, transpiration in leucospermum conocarpodendron trees: implications for stilling on the cape Peninsula. Tree Physiology, 36, 954-966. |
[20] | Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC (2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71. |
[21] | Li YN, Ye JX, Xu DY, Zhou GM, Feng HL (2022). Prediction of sap flow with historical environmental factors based on deep learning technology. Computers and Electronics in Agriculture, 202, 107400. DOI: 10.1016/j.compag.2022.107400. |
[22] | Li YY, Shi H, Shao MA (2010a). Cavitation resistance of dominant trees and shrubs in Loess hilly region and their relationship with xylem structure. Journal of Beijing Forestry University, 32(3), 8-13. |
[李秧秧, 石辉, 邵明安 (2010a). 黄土丘陵区典型树木抵抗空穴化能力及与木质部结构的关系. 北京林业大学学报, 32(3), 8-13.] | |
[23] | Li YY, Shi H, Shao MA (2010b). Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession. Scientia Silvae Sinicae, 46(2), 67-73. |
[李秧秧, 石辉, 邵明安 (2010b). 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系. 林业科学, 46(2), 67-73.] | |
[24] | Liu YJ, Zhang HH, Chang SZ, Zhou XQ, Ma CM (2023). Sap flow at night in the stems of Ailanthus altissima and its determinants. Journal of Irrigation and Drainage, 42(2), 9-15. |
[刘云洁, 张含含, 常胜朝, 周新启, 马长明 (2023). 臭椿夜间树干液流变化特征及环境驱动因素分析. 灌溉排水学报, 42(2), 9-15.] | |
[25] | Liu YL, Bai JH, Xiong W, Han YQ, Lian HL, Guo H, Xin ZM, Liu XJ, Liu HY (2022). The characteristics of branch nocturnal sap flow and its environmental driving mechanism of Haloxylon ammodendron artificial shrub in the Ulan Buh Desert. Journal of Desert Research, 42(5), 195-203. |
[刘雅莉, 白建华, 熊伟, 韩雨晴, 廉泓林, 郭浩, 辛智鸣, 刘湘杰, 刘怀远 (2022). 乌兰布和沙漠梭梭(Haloxylon Ammodendron)夜间液流特征及其环境驱动机制. 中国沙漠, 42(5), 195-203.]
DOI |
|
[26] | Liu ZB, Yu SP, Xu LH, Wang YH, Yu PT, Chao Y (2023). Differentiated responses of daytime and nighttime sap flow to soil water deficit in a larch plantation in Northwest China. Agricultural Water Management, 289, 108540. DOI: 10.1016/j.agwat.2023.108540. |
[27] | Lundberg S, Lee SI (2017). A unified approach to interpreting model predictions. [2023-08-01]. http://arxiv.org/abs/1705.07874.pdf.. |
[28] | Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032. |
[罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI |
|
[29] | Lyu J, He Q, Yang J, Chen Q, Cheng R, Yan M, Yamanaka N, Du S (2020). Sap flow characteristics in growing and non-growing seasons in three tree species in the semiarid Loess Plateau region of China. Trees, 34, 943-955. |
[30] | Lyu J, Li G, Otsuki K, Yamanaka N, Wang Y, Yue M, Du S (2023). Different transpiration and growth patterns of the black locust plantation and natural oak forest on China’s Loess Plateau. Ecohydrology, 16, 1-12. |
[31] | Mastrangelo C (2012). Time series analysis and forecasting by example. Journal of Quality Technology, 44, 176-177. |
[32] | McDonald EP, Erickson JE, Kruger EL (2002). Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2. Functional Plant Biology, 29, 1115-1120. |
[33] | Niu ML, Li HL, Li XX (2022). A CatBoost model for simulating the daily reference evapotranspiration in greenhouse. Water Saving Irrigation, (1), 14-19. |
[牛曼丽, 李红岺, 李新旭 (2022). 基于CatBoost的温室日参考作物蒸发蒸腾量估算模型研究. 节水灌溉, (1), 14-19.] | |
[34] | Ord K (1996). Multivariate tests for time series models. Technometrics, 38, 187. DOI: 10.1080/00401706.1996.10484474. |
[35] | Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F, Dolman AJ, Janssens IA, Peñuelas J, Zhang G, Vicca S, Wan S, Wang S, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92. |
[36] | Phillips NG, Lewis JD, Logan BA, Tissue DT (2010). Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 30, 586-596. |
[37] | Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, Lv WW, Li BL, Sun QL, Meng FD, Jiang YH, et al.(2022). Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 633-651. |
[38] | Siddiq Z, Cao KF (2018). Nocturnal transpiration in 18 broadleaf timber species under a tropical seasonal climate. Forest Ecology and Management, 418, 47-54. |
[39] | Stuerz S, Vu DH, Asch F (2020). Nutrient uptake and assimilation under varying day and night root zone temperatures in lowland rice. Journal of Plant Nutrition and Soil Science, 183, 602-614. |
[40] | Su Y, Wang XY, Sun YQ, Wu HL (2022). Sap flow velocity in Fraxinus pennsylvanica in response to water stress and microclimatic variables. Frontiers in Plant Science, 13, 884526. DOI: 10.3389/fpls.2022.884526. |
[41] | Suárez JC, Casanoves F, Bieng MAN, Melgarejo LM, Di Rienzo JA, Armas C (2021). Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. Scientific Reports, 11, 10512. DOI: 10.1038/s41598-021-89876-z. |
[42] | Tyree MT, Dixon MA (1986). Water stress induced cavitation and embolism in some woody plants. Physiologia Plantrum, 66, 397-405. |
[43] |
Wang H, Zhao P, Hölscher D, Wang Q, Lu P, Cai X, Zeng X (2012). Nighttime sap flow of Acacia mangium and its implications for nighttime transpiration and stem water storage. Journal of Plant Ecology, 5, 294-304.
DOI |
[44] | Wang HZ, Han RL, Liang ZS, Fan HZ (2003). Effect of soil drought stress on the shoot growth and water use efficiency of Quercus mongolica and Acer stenolobum var. megalophyllum. Acta Botanica Boreali-Occidentalia Sinica, 23, 1377-1382. |
[王海珍, 韩蕊莲, 梁宗锁, 樊鸿章 (2003). 土壤干旱对蒙古栎、大叶细裂槭幼苗生长及水分利用的影响. 西北植物学报, 23, 1377-1382.] | |
[45] | Wang Q, Gao JG, Zhao P, Zhu LW, Ouyang L, Ni GY, Zhao XH (2018). Biotic- and abiotic-driven variations of the night-time sap flux of three co-occurring tree species in a low subtropical secondary broadleaf forest. AoB PLANTS, 10, ply025. DOI: 10.1093/aobpla/ply025. |
[46] | Wu J, Liu H, Zhu J, Gong L, Xu L, Jin G, Li J, Hauer R, Xu C (2020). Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban Forestry & Urban Greening, 56, 126800. DOI: 10.1016/j.u fug.2020.126800. |
[47] | Yan CH, Wang B, Zou ZD, Yu LY, Huang WB, Qiu GY (2020). Characteristics of nighttime sap flow and its partition in a mixed forest in Jiuzhaigou valley. Acta Scientiarum Naturalium Universitatis Pekinensis, 56, 732-738. |
[鄢春华, 王蓓, 邹振东, 余雷雨, 黄婉彬, 邱国玉 (2020). 九寨沟针阔混交林的夜间液流及其分配特征研究. 北京大学学报, 56, 732-738.] | |
[48] | Yan M, Zhang J, He Q, Shi W, Otsuki K, Yamanaka N, Du S (2016). Sapflow-based stand transpiration in a semiarid natural oak forest on China’s Loess Plateau. Forests, 7, 227. DOI: 10.3390/f7100227. |
[49] | Yan M, Yamanaka N, Yamamoto F, Du S (2010). Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying. Acta Physiologiae Plantarum, 32, 183-189. |
[50] | You HZ, Wang C, Zhao GZ, Li DM (2023). Distribution characteristics of Populus euramericana nocturnal sap flow and its response to environmental factors in North China Plain. Ecology and Environmental Sciences, 32, 256-263. |
[尤海舟, 王超, 赵广智, 李冬梅 (2023). 华北平原欧美107杨单株夜间液流分配特征及其环境响应. 生态环境学报, 32, 256-263.]
DOI |
|
[51] | Yu T, Feng Q, Si J, Mitchell PJ, Forster MA, Zhang X, Zhao C (2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecology and Evolution, 8, 2607-2616. |
[52] | Yu T, Feng Q, Si J, Zhang X, Alec D, Zhao C (2016). Evidences and magnitude of nighttime transpiration derived from Populus euphratica in the extreme arid region of China. Journal of Plant Biology, 59, 648-657. |
[53] |
Zeppel M, Tissue D, Taylor D, Macinnis-Ng C, Eamus D (2010). Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 30, 988-1000.
DOI PMID |
[54] |
Zeppel MJB, Lewis JD, Chaszar B, Smith RA, Medlyn BE, Huxman TE, Tissue DT (2012). Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytologist, 193, 929-938.
DOI PMID |
[55] | Zhang J, Cai YM, Chen LX, Chen ZSN, Zhang ZQ (2019). Influencing factors and characteristics of nighttime sap flow of Acer truncatum in Beijing mountainous area. Acta Ecologica Sinica, 39, 3210-3223. |
[张婕, 蔡永茂, 陈立欣, 陈左司南, 张志强 (2019). 北京山区元宝枫夜间液流活动特征及影响因素. 生态学报, 39, 3210-3223.] | |
[56] | Zhang R, Bi HX, Jiao ZH, Wang N, Zhao DY, Yun HY, Huang JH (2022). Diurnal and nocturnal changes in stem sap flow of Robinia pseudoacacia during growing season and its response to meteorological factors. Journal of Zhejiang A&F University, 39, 1238-1246. |
[张荣, 毕华兴, 焦振寰, 王宁, 赵丹阳, 云慧雅, 黄靖涵 (2022). 生长季刺槐树干液流昼夜变化特征及其对气象因子的响应. 浙江农林大学学报, 39, 1238-1246.] | |
[57] | Zhang YW, Wang ZX, Sun ZH, Huang JP (2022). Recognition of dominant factors behind sap flow of Larix olgensis based on random forest method. Journal of Temperate Forestry Research, 5(3), 21-28. |
[张延文, 王子瑄, 孙志虎, 黄建平 (2022). 基于随机森林的长白落叶松树干液流影响因素研究. 温带林业研究, 5(3), 21-28.] | |
[58] | Zhao C, Si J, Feng Q, Yu T, Li P, Forster MA (2019). Nighttime transpiration of Populus euphratica during different phenophases. Journal of Forestry Research, 30, 435-444. |
[59] | Zhao FF, Ma X, Di N, Wang Y, Liu Y, Li GD, Jia LM, Xi BY (2020). Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa. Chinese Journal of Plant Ecology, 44, 864-874. |
[赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野 (2020). 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子. 植物生态学报, 44, 864-874.] | |
[60] | Zhao WL, Qiu GY, Xiong YJ, Zou ZD, Yan CH, Yu LY, Hao MY (2021). Simulation of sub-daily transpiration characteristics of typical arbor trees in cities based on deep neural network. Acta Scientiarum Naturalium Universitatis Pekinensis, 57, 322-332. |
[赵文利, 邱国玉, 熊育久, 邹振东, 鄢春华, 余雷雨, 郝梦宇 (2021). 基于深度神经网络的城市典型乔木日内蒸腾特征模拟研究. 北京大学学报, 57, 322-332.] | |
[61] | Zhao XW, Zhao P, Zhu LW, Zhao XH (2016). Applying time series models to estimate time lags between sap flux and micro-meteorological factors. Écoscience, 23, 13-27. |
[62] | Zhao XW, Zhao P, Zhu LW (2022). Differentiating refilling and transpiration from night-time sap flux based on time series modelling. Trees, 36, 16211632. DOI: 10.1007/s00468-022-02316-x. |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[3] | Xiao-Tong SONG Jiqi GU Xiaoming Shao. Relationship between morphological characteristics and environmental changes of Didymodon constrictus (Mitt.) Saito in Tibet and its response strategies [J]. Chin J Plant Ecol, 2024, 48(10): 1351-1360. |
[4] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[5] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[6] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[7] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[8] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[9] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[10] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[11] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[12] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[13] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[14] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[15] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn