Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (2): 159-166.DOI: 10.3724/SP.J.1258.2014.00014
Special Issue: 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
YANG Xiao-Xia1,2, REN Fei1,2, ZHOU Hua-Kun1, HE Jin-Sheng1,3,*()
Received:
2013-07-01
Accepted:
2013-09-22
Online:
2014-07-01
Published:
2014-02-12
Contact:
HE Jin-Sheng
YANG Xiao-Xia, REN Fei, ZHOU Hua-Kun, HE Jin-Sheng. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2014, 38(2): 159-166.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00014
Fig. 1 Effects of nitrogen addition (A) and phosphorus addition (B) on aboveground biomass of three different functional groups (mean ± SE). **, p < 0.01; ***, p < 0.001.
Fig. 2 Effects of nitrogen addition (A) and phosphorus addition (B) on the proportions of the three different functional groups aboveground biomass of the community biomass (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
莎草生物量 Sedge biomass | 0.28 | 0.611 | 15.60 | 0.006 | 2.75 | 0.141 | ||
莎草生物量 Sedge biomass (%) | 0.01 | 0.910 | 17.53 | 0.004 | 0.79 | 0.403 | ||
禾本生物量 Grass biomass | 15.24 | 0.006 | 39.95 | <0.001 | 0.80 | 0.400 | ||
禾本生物量 Grass biomass (%) | 12.78 | 0.009 | 19.64 | 0.003 | 0.19 | 0.676 | ||
杂类草生物量 Forb biomass | 1.91 | 0.210 | 0.13 | 0.730 | 0.97 | 0.358 | ||
杂类草生物量 Forb biomass (%) | 9.91 | 0.016 | 9.34 | 0.018 | 0.04 | 0.844 |
Table 1 Two way ANOVA of the effects of nitrogen and phosphorous additions on aboveground biomass of different functional groups and their proportions of the community biomass
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
莎草生物量 Sedge biomass | 0.28 | 0.611 | 15.60 | 0.006 | 2.75 | 0.141 | ||
莎草生物量 Sedge biomass (%) | 0.01 | 0.910 | 17.53 | 0.004 | 0.79 | 0.403 | ||
禾本生物量 Grass biomass | 15.24 | 0.006 | 39.95 | <0.001 | 0.80 | 0.400 | ||
禾本生物量 Grass biomass (%) | 12.78 | 0.009 | 19.64 | 0.003 | 0.19 | 0.676 | ||
杂类草生物量 Forb biomass | 1.91 | 0.210 | 0.13 | 0.730 | 0.97 | 0.358 | ||
杂类草生物量 Forb biomass (%) | 9.91 | 0.016 | 9.34 | 0.018 | 0.04 | 0.844 |
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
AGB (g·m-2·a-1) | 13.61 | 0.008 | 66.38 | < 0.001 | 0.95 | 0.363 | ||
BGB (g·m-2·a-1) | 1.80 | 0.216 | 4.82 | 0.060 | 0.02 | 0.880 | ||
TB (g·m-2·a-1) | 0.002 | 0.969 | 15.22 | 0.008 | 1.54 | 0.260 | ||
R/S | 3.50 | 0.086 | 1.24 | 0.309 | 0.07 | 0.806 |
Table 2 Two-way ANOVA of the effects of nitrogen and phosphorus additions on aboveground biomass (AGB), belowground biomass (BGB), total biomass (TB) and the ratio of belowground biomass to aboveground biomass (R/S)
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
AGB (g·m-2·a-1) | 13.61 | 0.008 | 66.38 | < 0.001 | 0.95 | 0.363 | ||
BGB (g·m-2·a-1) | 1.80 | 0.216 | 4.82 | 0.060 | 0.02 | 0.880 | ||
TB (g·m-2·a-1) | 0.002 | 0.969 | 15.22 | 0.008 | 1.54 | 0.260 | ||
R/S | 3.50 | 0.086 | 1.24 | 0.309 | 0.07 | 0.806 |
Fig. 3 Effects of nitrogen and phosphorus additions on aboveground biomass (A), belowground biomass (B) and total biomass (C) (mean ± SE). **, p < 0.01; ***, p < 0.001.
对照 CK | 氮添加 N addition | 磷添加 P addition | 氮磷添加 N, P addition | |
---|---|---|---|---|
AGB (g C·m-2) | 146.5 ± 14.0a | 204.8 ± 7.8b | 250.9 ± 12.7c | 281.5 ± 7.9d |
BGB (g C·m-2) | 558.0 ± 68.4a | 510.5 ± 36.8a | 709.1 ± 49.5b | 598.8 ± 101.3a |
TB (g C·m-2) | 704.6 ± 64.3a | 715.3 ± 40.9a | 960.0 ± 41.8b | 880.3 ± 95.8ab |
Table 3 Aboveground biomass (AGB), belowground biomass (BGB) and total biomass (TB) carbon stock under different treatments (mean ± SE)
对照 CK | 氮添加 N addition | 磷添加 P addition | 氮磷添加 N, P addition | |
---|---|---|---|---|
AGB (g C·m-2) | 146.5 ± 14.0a | 204.8 ± 7.8b | 250.9 ± 12.7c | 281.5 ± 7.9d |
BGB (g C·m-2) | 558.0 ± 68.4a | 510.5 ± 36.8a | 709.1 ± 49.5b | 598.8 ± 101.3a |
TB (g C·m-2) | 704.6 ± 64.3a | 715.3 ± 40.9a | 960.0 ± 41.8b | 880.3 ± 95.8ab |
[1] | Chapin FS III, Matson PA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer-Verlag, New York. |
[2] |
Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[3] | Fang JY, Liu GH, Xu SL (1996). Carbon storage in terrestrial ecosystem of China. In: Wang GC, Wen YP eds. The Measurement of Greenhouse Gas and Their Release and Related Processes. China Environmental Science Press, Beijing. 391-397. (in Chinese) |
[ 方精云, 刘国华, 徐嵩龄 (1996). 中国陆地生态系统的碳库. 见: 王庚辰, 温玉璞编. 温室气体浓度和排放监测及相关过程. 中国环境科学出版社, 北京. 391-397.] | |
[4] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI URL PMID |
[5] |
Henry HA, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006). Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland. Ecosystems, 9, 1066-1075.
DOI URL |
[6] | Hungate BA, Naiman RJ, Apps M, Cole JJ, Moldan B, Satake K, Stewart JW, Victoria R, Vitousek PM, Melillo J (2003). Disturbance and element interactions. In: Melillo JM, Fieldd CB, Moldan B eds. Interactions of the Major Biogeochemical Cycles. Island Press, Washington. 47-62. |
[7] | IPCC (2007). Climate Change 2007: Synthesis Report. Sum- mary for Policymakers. https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.Cited: July 2007. |
[8] |
Jiang CM, Yu GR, Li YN, Cao GM, Yang ZP, Sheng WP, Yu WT (2012). Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecological Engineering, 44, 1-9.
DOI URL |
[9] |
Jobbágy EG, Sala OE (2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549.
DOI URL |
[10] |
Keith H, Raison RJ, Jacobsen KL (1997). Allocation of carbon in a mature eucalypt forest and some effects of soil phosphorus availability. Plant and Soil, 196, 81-99.
DOI URL |
[11] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[12] |
Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2047-2056.
DOI URL |
[13] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[14] |
Lü C, Tian H (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05, doi: 10.1029/2006JD007990.
DOI URL PMID |
[15] |
Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 16, 1606-1617.
DOI URL |
[16] |
Majdi H, Andersson P (2005). Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems, 8, 191-199.
DOI URL |
[17] |
Mooney HA, Vitousek PM, Matson PA (1987). Exchange of materials between terrestrial ecosystems and the atmosphere. Science, 238, 926-932.
DOI URL PMID |
[18] | Odum EP, Barrett GW (2005). Fundamentals of Ecology. 5th edn. Thomson Brooks/Cole, California. |
[19] | Piao SL, Fang JY, Zhou LM, Tan K, Tao S (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, doi: 10.1029/2005GB002634. |
[20] |
Raison RJ (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108.
DOI URL |
[21] |
Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai DXC, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31.
DOI URL |
[22] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[23] |
Scurlock J, Johnson K, Olson R (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.
DOI URL |
[24] | Shaver GR (1986). Woody stem production in Alaskan tundra shrubs. Ecology, 67, 660-669. |
[25] | Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin A (1998). Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecological Monographs, 68, 75-97. |
[26] | Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294. (in Chinese with English abstract) |
[ 沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.] | |
[27] |
Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC (2012). Different inter-annual responses to avail- ability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111.
DOI URL PMID |
[28] |
Stöcklin J, Schweizer K, Körner C (1998). Effects of elevated CO2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia, 116, 50-56.
DOI URL PMID |
[29] | Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447. |
[30] |
Verhoeven JTA, Koerselman W, Meuleman AFM (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution, 11, 494-497.
URL PMID |
[31] | Vitousek PM (2004). Nutrient Cycling and Limitation: Hawai’i As A Model System. Princeton University Press, Princeton. |
[32] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implica- tions, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[33] | Xin XJ (2011). Effects of N, P Addition on Above/Below- Ground Biomass Allocation and Plant Functional Types’ Composition in a Sub-Alpine Meadow. Master degree dissertation, Lanzhou University, Lanzhou. 21. (in Chinese) |
[ 辛小娟 (2011). 氮、磷添加对亚高山草甸地上/地下生物量分配及植物功能群组成的影响. 硕士学位论文, 兰州大学, 兰州. 21.] | |
[34] | Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003). Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs, 73, 585-604. |
[35] | Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647. |
[36] | Zhou XM (2001). Chinese Kobresia Meadows. Science Press, Beijing. (in Chinese) |
[ 周兴民 (2001). 中国嵩草草甸. 科学出版社, 北京.] |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[4] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[5] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[6] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[7] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[8] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[9] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[10] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[11] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[12] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[13] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[14] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[15] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn