Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (2): 116-124.DOI: 10.3724/SP.J.1258.2013.00038
Special Issue: 稳定同位素生态学; 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
DENG Jian-Ming2*, YAO Bu-Qing1*, ZHOU Hua-Kun1,**(), ZHAO Xin-Quan1, WEI Qing3, CHEN Zhe1,4, WANG Wen-Ying3
Received:
2013-01-04
Accepted:
2013-04-07
Online:
2014-01-04
Published:
2014-02-12
Contact:
ZHOU Hua-Kun
DENG Jian-Ming, YAO Bu-Qing, ZHOU Hua-Kun, ZHAO Xin-Quan, WEI Qing, CHEN Zhe, WANG Wen-Ying. Nitrogen uptake and allocation characteristics of alpine meadow main species under water and nitrogen additions based on 15N isotope[J]. Chin J Plant Ecol, 2014, 38(2): 116-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00038
地上部分生物量 Aboveground biomass | 根冠比 Root shoot ratio | δ15N地上部分 δ15NAboveground | δ15N地下部分 δ15NBelo-wground | 15N分配(δ15N地上部分/δ15N地下部分) 15N allocation (δ15NBelowground/δ15NAboveground) | 15N吸收能力 15N absorption capability | |
---|---|---|---|---|---|---|
物种 Species (S) | 430.407*** | 516.956*** | 824.440*** | 679.706*** | 226.575*** | 414.199*** |
N处理 N treatment (N) | 53.854*** | 0.020 | 79.763*** | 1.073 | 49.848*** | 63.005*** |
水分处理 Water treatment (W) | 6.410** | 10.558*** | 161.192*** | 87.222*** | 4.365* | 102.997*** |
物种×N处理 S × N | 14.586*** | 0.849 | 33.536*** | 8.971*** | 6.907*** | 12.010*** |
物种×水分处理 S × W | 11.515*** | 8.600*** | 30.235*** | 19.966*** | 6.173*** | 16.559*** |
物种×N处理×水分处理 S × N × W | 8.483*** | 22.194*** | 66.099*** | 64.992*** | 9.027*** | 32.964*** |
Table 1 Results of ANOVA for aboveground biomass, root to shoot ratio, δ15NAboveground, δ15NBelowground, 15N allocation, and 15N absorption capability
地上部分生物量 Aboveground biomass | 根冠比 Root shoot ratio | δ15N地上部分 δ15NAboveground | δ15N地下部分 δ15NBelo-wground | 15N分配(δ15N地上部分/δ15N地下部分) 15N allocation (δ15NBelowground/δ15NAboveground) | 15N吸收能力 15N absorption capability | |
---|---|---|---|---|---|---|
物种 Species (S) | 430.407*** | 516.956*** | 824.440*** | 679.706*** | 226.575*** | 414.199*** |
N处理 N treatment (N) | 53.854*** | 0.020 | 79.763*** | 1.073 | 49.848*** | 63.005*** |
水分处理 Water treatment (W) | 6.410** | 10.558*** | 161.192*** | 87.222*** | 4.365* | 102.997*** |
物种×N处理 S × N | 14.586*** | 0.849 | 33.536*** | 8.971*** | 6.907*** | 12.010*** |
物种×水分处理 S × W | 11.515*** | 8.600*** | 30.235*** | 19.966*** | 6.173*** | 16.559*** |
物种×N处理×水分处理 S × N × W | 8.483*** | 22.194*** | 66.099*** | 64.992*** | 9.027*** | 32.964*** |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | ||
---|---|---|---|---|---|---|---|
地上部分生物量 Aboveground biomass (g) | 22.871±2.561bcd | 16.609±1.197d | 18.110±2.431cd | 24.105±3.730bcd | 27.091±1.442bc | 38.850±5.745a | |
相对 丰度 Relative abundance | 垂穗披碱草 Elymus nutans | 0.600±0.039c | 0.704±0.016ab | 0.728±0.041ab | 0.632±0.049bc | 0.542±0.035c | 0.704±0.034ab |
矮生嵩草 Kobresia humilis | 0.040±0.009a | 0.030±0.007ab | 0.018±0.003bc | 0.032±0.006ab | 0.035±0.005a | 0.042±0.010a | |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.061±0.015cde | 0.073±0.009cd | 0.064±0.015cde | 0.092±0.017bc | 0.173±0.025a | 0.025±0.006e | |
美丽风毛菊 Saussurea superba | 0.057±0.025bcd | 0.068±0.011ab | 0.027±0.003d | 0.056±0.005bcd | 0.098±0.010a | 0.075±0.008ab | |
鹅绒委陵菜 Potentilla anserina | 0.099±0.007a | 0.026±0.004e | 0.047±0.001cde | 0.085±0.019ab | 0.064±0.003bc | 0.057±0.004cd | |
其他植物 Other plants | 0.074±0.003ab | 0.022±0.005d | 0.077±0.006ab | 0.064±0.009bc | 0.040±0.002cd | 0.083±0.008ab |
Table 2 Total aboveground biomass of single micro-regions and relative abundances of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | ||
---|---|---|---|---|---|---|---|
地上部分生物量 Aboveground biomass (g) | 22.871±2.561bcd | 16.609±1.197d | 18.110±2.431cd | 24.105±3.730bcd | 27.091±1.442bc | 38.850±5.745a | |
相对 丰度 Relative abundance | 垂穗披碱草 Elymus nutans | 0.600±0.039c | 0.704±0.016ab | 0.728±0.041ab | 0.632±0.049bc | 0.542±0.035c | 0.704±0.034ab |
矮生嵩草 Kobresia humilis | 0.040±0.009a | 0.030±0.007ab | 0.018±0.003bc | 0.032±0.006ab | 0.035±0.005a | 0.042±0.010a | |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.061±0.015cde | 0.073±0.009cd | 0.064±0.015cde | 0.092±0.017bc | 0.173±0.025a | 0.025±0.006e | |
美丽风毛菊 Saussurea superba | 0.057±0.025bcd | 0.068±0.011ab | 0.027±0.003d | 0.056±0.005bcd | 0.098±0.010a | 0.075±0.008ab | |
鹅绒委陵菜 Potentilla anserina | 0.099±0.007a | 0.026±0.004e | 0.047±0.001cde | 0.085±0.019ab | 0.064±0.003bc | 0.057±0.004cd | |
其他植物 Other plants | 0.074±0.003ab | 0.022±0.005d | 0.077±0.006ab | 0.064±0.009bc | 0.040±0.002cd | 0.083±0.008ab |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.495±0.026Ca | 0.515±0.029CDa | 0.519±0.016Ba | 0.573±0.093Ca | 0.475±0.049Ca | 0.554±0.034Ca |
矮生嵩草 Kobresia humilis | 3.021±0.227Abc | 3.737±0.200Ab | 3.616±0.254Ab | 4.770±0.395Aa | 2.191±0.139Bc | 3.009±0.284Bbc |
异叶米口袋 Gueldenstaedtia diversiffolia | 3.881±0.591Ab | 3.346±0.156Bb | 3.392±0.461Ab | 2.530±0.326Bb | 3.424±0.298Ab | 5.136±1.093Aa |
美丽风毛菊 Saussurea superba | 1.001±0.173Ba | 0.957±0.058Cab | 0.766±0.072Bb | 1.152±0.001Ca | 0.641±0.194Cb | 0.622±0.115Cb |
鹅绒委陵菜 Potentilla anserina | 0.558±0.028Cc | 0.358±0.001Dd | 0.939±0.099Ba | 0.911±0.097Cab | 0.496±0.001Ccd | 0.746±0.078Cb |
Table 3 Root and shoot ratios of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.495±0.026Ca | 0.515±0.029CDa | 0.519±0.016Ba | 0.573±0.093Ca | 0.475±0.049Ca | 0.554±0.034Ca |
矮生嵩草 Kobresia humilis | 3.021±0.227Abc | 3.737±0.200Ab | 3.616±0.254Ab | 4.770±0.395Aa | 2.191±0.139Bc | 3.009±0.284Bbc |
异叶米口袋 Gueldenstaedtia diversiffolia | 3.881±0.591Ab | 3.346±0.156Bb | 3.392±0.461Ab | 2.530±0.326Bb | 3.424±0.298Ab | 5.136±1.093Aa |
美丽风毛菊 Saussurea superba | 1.001±0.173Ba | 0.957±0.058Cab | 0.766±0.072Bb | 1.152±0.001Ca | 0.641±0.194Cb | 0.622±0.115Cb |
鹅绒委陵菜 Potentilla anserina | 0.558±0.028Cc | 0.358±0.001Dd | 0.939±0.099Ba | 0.911±0.097Cab | 0.496±0.001Ccd | 0.746±0.078Cb |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.971±0.099Abcd | 0.992±0.068Bbc | 0.808±0.033Ad | 0.919±0.099Acd | 1.395±0.122ABa | 1.103±0.048Ab |
矮生嵩草 Kobresia humilis | 0.132±0.005Dd | 0.178±0.008Dc | 0.198±0.011Db | 0.134±0.006Dd | 0.234±0.007Ca | 0.150±0.007Dd |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.179±0.010Db | 0.224±0.010Da | 0.174±0.005Db | 0.222±0.014Da | 0.237±0.005Ca | 0.163±0.011Db |
美丽风毛菊 Saussurea superba | 0.593±0.053Cbc | 0.580±0.049Cbc | 0.726±0.069Bb | 0.375±0.001Cc | 1.678±0.390Aa | 0.668±0.077Cb |
鹅绒委陵菜 Potentilla anserina | 0.740±0.029Bc | 1.308±0.000Aa | 0.463±0.038Cd | 0.749±0.048Bc | 1.001±0.001Bb | 0.933±0.063Bb |
Table 4 15N absorption capability of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.971±0.099Abcd | 0.992±0.068Bbc | 0.808±0.033Ad | 0.919±0.099Acd | 1.395±0.122ABa | 1.103±0.048Ab |
矮生嵩草 Kobresia humilis | 0.132±0.005Dd | 0.178±0.008Dc | 0.198±0.011Db | 0.134±0.006Dd | 0.234±0.007Ca | 0.150±0.007Dd |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.179±0.010Db | 0.224±0.010Da | 0.174±0.005Db | 0.222±0.014Da | 0.237±0.005Ca | 0.163±0.011Db |
美丽风毛菊 Saussurea superba | 0.593±0.053Cbc | 0.580±0.049Cbc | 0.726±0.069Bb | 0.375±0.001Cc | 1.678±0.390Aa | 0.668±0.077Cb |
鹅绒委陵菜 Potentilla anserina | 0.740±0.029Bc | 1.308±0.000Aa | 0.463±0.038Cd | 0.749±0.048Bc | 1.001±0.001Bb | 0.933±0.063Bb |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
地上部分δ15N Aboveground δ15N | ||||||
垂穗披碱草 Elymus nutans | 4069±244Abc | 4425±150Aab | 3952±112Abc | 3845±326Abc | 5023±418Ba | 4321±173Aab |
矮生嵩草 Kobresia humilis | 2396±119Cbc | 3268±39Ca | 3181±275Ba | 2599±72Bb | 3200±110Da | 2100±181Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 850±174Dab | 958±180Dab | 657±84Dbc | 1145±213Da | 909±90Eab | 947±166Dab |
美丽风毛菊 Saussurea superba | 3431±332Bb | 3446±350Cb | 3108±225Bb | 2140±214Cc | 6407±641Aa | 3252±130Bb |
鹅绒委陵菜 Potentilla anserina | 3235±285Bb | 4044±120Ba | 1982±200Cc | 4006±191Aa | 3963±400Ca | 4593±333Aa |
地下部分δ15N Belowground δ15N | ||||||
垂穗披碱草 Elymus nutans | 2980±210Bab | 3548±308Aa | 2638±207Aab | 2818±565Aab | 2893±547Bab | 3151±246Aab |
矮生嵩草 Kobresia humilis | 646±117Cab | 1034±47Ca | 1138±199Ca | 475±74Cc | 1011±299Cab | 514±66Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 479±144Cabc | 564±156Dab | 416±35Dbcd | 354±47Cbcd | 702±70Da | 376±45Cbcd |
美丽风毛菊 Saussurea superba | 3246±169Ab | 2427±98Bc | 2451±112Ac | 1649±165Be | 5849±585Aa | 2211±168Bcd |
鹅绒委陵菜 Potentilla anserina | 3389±342Abc | 3842±380Aa | 1871±190Be | 2867±182Ad | 2979±300Bcd | 3515±244Aab |
15N分配 15N allocation | ||||||
垂穗披碱草 Elymus nutans | 1.369±0.121Bb | 1.251±0.073BCb | 1.506±0.165Bb | 1.392±0.216Cb | 2.236±0.419Ba | 1.375±0.092Cb |
矮生嵩草 Kobresia humilis | 3.774±0.556Abc | 3.166±0.182Abc | 2.825±0.257Abc | 5.564±0.935Aa | 3.719±0.760Abc | 4.099±0.185Ab |
异叶米口袋 Gueldenstaedtia diversiffolia | 1.914±0.452Bab | 1.750±0.354Bb | 1.578±0.097Bb | 3.312±1.006Ba | 1.296±0.130Cb | 2.509±0.148Bab |
美丽风毛菊 Saussurea superba | 1.055±0.052Cd | 1.422±0.080Bab | 1.267±0.035BCc | 1.297±0.130Cbc | 1.095±0.110Cd | 1.473±0.057Ca |
鹅绒委陵菜 Potentilla anserina | 0.956±0.020Ce | 1.052±0.021Cde | 1.059±0.100Ccde | 1.398±0.122Cab | 1.330±0.150Cbc | 1.315±0.186Cbcd |
Table 5 δ15N (‰) of aboveground and belowground, and 15N allocation (aboveground δ15N / underground δ15N) of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
地上部分δ15N Aboveground δ15N | ||||||
垂穗披碱草 Elymus nutans | 4069±244Abc | 4425±150Aab | 3952±112Abc | 3845±326Abc | 5023±418Ba | 4321±173Aab |
矮生嵩草 Kobresia humilis | 2396±119Cbc | 3268±39Ca | 3181±275Ba | 2599±72Bb | 3200±110Da | 2100±181Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 850±174Dab | 958±180Dab | 657±84Dbc | 1145±213Da | 909±90Eab | 947±166Dab |
美丽风毛菊 Saussurea superba | 3431±332Bb | 3446±350Cb | 3108±225Bb | 2140±214Cc | 6407±641Aa | 3252±130Bb |
鹅绒委陵菜 Potentilla anserina | 3235±285Bb | 4044±120Ba | 1982±200Cc | 4006±191Aa | 3963±400Ca | 4593±333Aa |
地下部分δ15N Belowground δ15N | ||||||
垂穗披碱草 Elymus nutans | 2980±210Bab | 3548±308Aa | 2638±207Aab | 2818±565Aab | 2893±547Bab | 3151±246Aab |
矮生嵩草 Kobresia humilis | 646±117Cab | 1034±47Ca | 1138±199Ca | 475±74Cc | 1011±299Cab | 514±66Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 479±144Cabc | 564±156Dab | 416±35Dbcd | 354±47Cbcd | 702±70Da | 376±45Cbcd |
美丽风毛菊 Saussurea superba | 3246±169Ab | 2427±98Bc | 2451±112Ac | 1649±165Be | 5849±585Aa | 2211±168Bcd |
鹅绒委陵菜 Potentilla anserina | 3389±342Abc | 3842±380Aa | 1871±190Be | 2867±182Ad | 2979±300Bcd | 3515±244Aab |
15N分配 15N allocation | ||||||
垂穗披碱草 Elymus nutans | 1.369±0.121Bb | 1.251±0.073BCb | 1.506±0.165Bb | 1.392±0.216Cb | 2.236±0.419Ba | 1.375±0.092Cb |
矮生嵩草 Kobresia humilis | 3.774±0.556Abc | 3.166±0.182Abc | 2.825±0.257Abc | 5.564±0.935Aa | 3.719±0.760Abc | 4.099±0.185Ab |
异叶米口袋 Gueldenstaedtia diversiffolia | 1.914±0.452Bab | 1.750±0.354Bb | 1.578±0.097Bb | 3.312±1.006Ba | 1.296±0.130Cb | 2.509±0.148Bab |
美丽风毛菊 Saussurea superba | 1.055±0.052Cd | 1.422±0.080Bab | 1.267±0.035BCc | 1.297±0.130Cbc | 1.095±0.110Cd | 1.473±0.057Ca |
鹅绒委陵菜 Potentilla anserina | 0.956±0.020Ce | 1.052±0.021Cde | 1.059±0.100Ccde | 1.398±0.122Cab | 1.330±0.150Cbc | 1.315±0.186Cbcd |
[1] | Aarssen LW (1989). Competitive ability and species coexistence: a “plants eye” view. Oikos, 56, 386-401. |
[2] |
Adler PB (2004). Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 85, 1265-1272.
DOI URL |
[3] |
Berendse F (1981). Competition between plant populations with different rooting depths. II. Pot experiments. Oecologia, 48, 334-341.
URL PMID |
[4] | Caldeira MC, Ryel RJ, Lawton JH, Pereira JS (2001). Mechanisms of positive biodiversity-production relationships: insights provided by δ13C analysis in experimental Mediterranean grassland plots. Ecology Letters, 4, 439-443. |
[5] | Caldwell MM (1987). Competition between root systems in natural communities. In: Gregory PJ, Lake JV, Rose DA eds. Root Development and Function. Cambridge University Press, Cambridge, UK. |
[6] | Caldwell MM, Richards JH (1986). Competing root systems: morphology and models of absorption. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. |
[7] | Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecological System, 11, 233-260. |
[8] | Chave J (2004). Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[9] |
Chu CJ, Wang YS, Du GZ, Maestre F, Luo YJ, Wang G (2007). On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities. Annals of Botany, 100, 807-812.
DOI URL PMID |
[10] | Clarkson DT (1985). Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology, 36, 77-115. |
[11] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
URL PMID |
[12] |
Fargione J, Brown CS, Tilman D (2003). Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916-8920.
DOI URL PMID |
[13] |
Fridley JD (2001). The influence of species diversity on ecosystem productivity: How, where and why? Oikos, 93, 514-526.
DOI URL |
[14] |
Gao YZ, Chen Q, Lin S, Giese M, Brueck H (2011). Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia, 165, 855-864.
DOI URL PMID |
[15] |
Gioseffi E, de Neergaard A, Schjoerring JK (2012). Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences, 9, 1509-1518.
DOI URL |
[16] |
Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 340, 227-238.
DOI URL |
[17] |
Gordon DR, Menke JW, Rice KJ (1989). Competition for soil water between annual plants and blue oak (Quercus douglasii) seedlings. Oecologia, 79, 533-541.
DOI URL |
[18] |
Harpole WS, Tilman D (2006). Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15-23.
URL PMID |
[19] |
Harpole WY, Potts D, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348.
DOI URL |
[20] |
Harrisona KA, Bolb R, Bardgett RD (2008). Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biology & Biochemistry, 40, 228-237.
DOI URL |
[21] |
Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79, 704-719.
DOI URL |
[22] |
Hubbell SP (2006). The neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
DOI URL PMID |
[23] |
Hutchinson GE (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159.
DOI URL |
[24] |
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005). Dissolved organic nitrogen uptake by plants―an important N uptake pathway? Soil Biology & Biochemistry, 37, 413-423.
DOI URL |
[25] |
Kelly CK, Bowler MG, Pybus O, Harvey PH (2008). Phylogeny, niches, and relative abundance in natural communities. Ecology, 89, 962-970.
DOI URL PMID |
[26] |
Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL PMID |
[27] |
Lambers JSR, Harpole WS, Tilman D, Knops J, Reich PB (2004). Mechanisms responsible for the positive diversity- productivity relationship in Minnesota grasslands. Ecology Letters, 7, 661-668.
DOI URL |
[28] |
Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168, 301-310.
DOI URL PMID |
[29] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2003). Effect of fertilizing nitrogen rate and time on Kobresia pygmaea meadow grassland. Pratacultural Science, 20, 47-50. (in Chinese with English abstract) |
[ 马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2003). 施氮量与施氮时间对小嵩草草甸草地的影响. 草业科学, 20, 47-50.] | |
[30] |
MacDougall AS, Gilbert B, Jonathan M, Levine JM (2009). Plant invasions and the niche. Journal of Ecology, 97, 609-615.
DOI URL |
[31] |
McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkwski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68-71.
DOI URL PMID |
[32] | Menge DL, Field CB (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 13, 2582-2591. |
[33] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009). Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI URL |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[34] |
Niu KC, Luo YJ, Choler P, Du GZ (2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493.
DOI URL |
[35] |
Parrish JAD, Bazzaz FA (1976). Underground niche separation in successional plants. Ecology, 57, 1281-1288.
DOI URL |
[36] | Shi SB, Li HM, Wang XY, Yue XG, Xu WH, Chen GC (2006). Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau. Journal of Plant Ecology (Chinese Version), 30, 40-46. (in Chinese with English abstract) |
[ 师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛 (2006). 青藏高原几种典型高山植物的光合特性比较. 植物生态学报, 30, 40-46.] | |
[37] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611.
DOI URL |
[38] |
Silvertown J, Dodd ME, Gowing G, Mountford JO (1999). Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63.
DOI URL |
[39] | Su B, Han XG, Huang JH (1999). Application of 15N natural abundance method to the research on nitrogen cycling in natural ecosystems . Acta Ecologica Sinica, 19, 408-416. (in Chinese with English abstract) |
[ 苏波, 韩兴国, 黄建辉 (1999). 15N自然丰度法在生态系统氮素循环研究中的应用 . 生态学报, 19, 408-416.] | |
[40] |
van Ruijven J, Berendse F (2003). Positive effects of plant species diversity on productivity in the absence of legumes. Ecology Letters, 6, 170-175.
DOI URL |
[41] |
Vandermeer JH (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107-132.
DOI URL |
[42] |
Veresoglou DS, Fitter AH (1984). Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology, 72, 259-272.
DOI URL |
[43] | Zhao BB, Niu KC, Du GZ (2009). The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 29, 1596-1606. (in Chinese with English abstract) |
[ 赵彬彬, 牛克昌, 杜国祯 (2009). 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响. 生态学报, 29, 1596-1606.] | |
[44] | Zhao XQ (2009). Alpine Meadow Ecosystem and Global Climate Change. Science Press, Beijing. (in Chinese) |
[ 赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[45] | Zhou HK, Zhou L, Zhao XQ, Liu W, Li YN, Yan ZL, Zhao XX (2002). A quantitative study on the plant population phenology in Kobresia humilis meadow. Acta Agrestia Sinica, 10, 279-286. (in Chinese with English abstract) |
[ 周华坤, 周立, 赵新全, 刘伟, 李英年, 严作良, 赵旭霞 (2002). 矮生嵩草草甸植物种群物候学定量研究. 草地学报, 10, 279-286.] | |
[46] | Zhou XM, Wu ZL (2006). Vegetation and Plant Keys in Haibei Alpine Meadow Ecosystem Research Station of Chinese Academy of Sciences. Qinghai People’s Press, Xining. (in Chinese) |
[ 周兴民, 吴珍兰 (2006). 中国科学院海北高寒草甸生态系统定位站植被与植物检索表. 青海人民出版社, 西宁.] |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[9] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[10] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[11] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[12] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[13] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[14] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[15] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn