Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (2): 186-195.DOI: 10.17521/cjpe.2016.0274
• Research Articles • Previous Articles Next Articles
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN*(), Yu-Sheng YANG
Received:
2016-09-06
Accepted:
2016-11-10
Online:
2017-02-10
Published:
2017-03-16
Contact:
Guang-Shui CHEN
About author:
KANG Jing-yao(1991-), E-mail:
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings[J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0274
Fig. 1 Annual changes of soil (0-10 cm) temperature (A) and moisture (B) under different treatments (mean ± SD). ▲, control treatment (ambient, ambient); ■, soil warming treatment (+5 °C, ambient).
Fig. 2 Soil (0-20 cm) nitrogen availability under different treatments (mean ± SD). NH4+, ammonium nitrogen. NO3- + NO2-, nitrate nitrogen. CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1). Different capital letters indicate significant differences among treatments (p < 0.05).
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
Table 1 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on soil temperature, soil moisture and soil nitrogen availability
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
Table 2 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
Fig. 3 Total number of fine roots emerged of one year (A) under different treatments and number of different diameter class (B) (mean ± SD). Different capital letters indicate significant differences among treatments (p < 0.05). Different lowercase letters indicate significant differences among diameters (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
Table 3 p-value of ANOVA on the effects of soil warming, nitrogen addition and diameter class on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
Table 4 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year in different diameter classes, seasons and soil layers
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
Table 5 p-value of repeated measures ANOVA on the effects of soil warming, nitrogen addition and season on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
Fig. 4 Total number of fine roots emerged per tube of one year under different seasons (mean ± SD). Different capital letters indicate significant differences among treatments in the same season (p < 0.05). Different lowercase letters indicate significant differences among seasons in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
Fig. 5 Total number of fine roots emerged per tube of one year under different soil layer (mean ± SD). Different capital letters indicate significant differences among treatments in the same soil layer (p < 0.05). Different lowercase letters indicate significant differences among soil layers in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
Table 6 p-value of ANOVA on the effects of soil warming, nitrogen addition and soil layer on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
Fig. 6 Proposed mechanism on the effects of soil warming and nitrogen addition on fine root production. “+” means increase; “-” means decrease; “NS” means have no significant effect. The red arrows mean effects by soil warming; while the black arrows mean effects by nitrogen addition.
[1] | Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316. |
[2] | Chen GS, Yang YS, Robinson D (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses.New Phytologist, 200, 1176-1186. |
[3] | Chen SD, Liu XF, Xiong DC, Lin WS, Lin CF, Xie L, Yang YS (2013). A preliminary study on effects of continuous active warming on soil respiration rates in central sub-tropical forests.Journal of Subtropical Resources and Environment, 4, 1-8. (in Chinese with English abstract)[陈仕东, 刘小飞, 熊德成, 林伟盛, 林成芳, 谢麟, 杨玉盛 (2013). 持续性主动增温对中亚热带森林土壤呼吸影响研究初报. 亚热带资源与环境学报, 4, 1-8.] |
[4] | Davidson EA (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860.Nature Geoscience, 2, 659-662. |
[5] | Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999). Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature.Oecologia, 120, 575-581. |
[6] | Hendricks JJ, Nadelhoffer KJ, Aber JD (1993). Assessing the role of fine roots in carbon and nutrient cycling.Trends in Ecology & Evolution, 8(5), 174-178. |
[7] | Huang JX, Chen GS, Yang ZJ, Xiong DC, Guo JF, Xie JS, Robinson D, Yang YS (2016). Understory fine roots are more ephemeral than those of trees in subtropical Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) stands.Annals of Forest Science, 73, 657-667. |
[8] | Huang JX, Ling H, Yang ZJ, Lu ZL, Xiong DC, Chen GS,Yang YS, Xie JS (2012). Estimating fine root production and mortality in subtropical Altingia grlilipes and Castanopsis carlesii forests.Acta Ecologica Sinica, 32, 4472-4480. (in Chinese with English abstract)[黄锦学, 凌华, 杨智杰, 卢正立, 熊德成, 陈光水, 杨玉盛, 谢锦升 (2012). 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 32, 4472-4480.] |
[9] | IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[10] | Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006). Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil.New Phytologist, 170, 345-356. |
[11] | Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005). Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition.Journal of Geo- physical Research Atmospheres, 110(D19), 2657-2677. |
[12] | Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production.Plant and Soil, 366, 287-303. |
[13] | Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014). Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment.Plant and Soil, 374, 73-88. |
[14] | Li WB, Jin CJ, Guan DX, Wang QK, Wang AZ, Yuan FH, Wu JB (2015). The effects of simulated nitrogen deposition on plant root traits: A meta-analysis.Soil Biology & Biochemistry, 82, 112-118. |
[15] | Liu LL, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters, 13, 819-828. |
[16] | Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264. |
[17] | Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology, 10, 182-188. |
[18] | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
[19] | Ostertag R (2001). Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests.Ecology, 82, 485-499. |
[20] | State Forestry Administration of the People’s Republic of China (2005). The National Forest Resources Statistics (1999-2003). China Forestry Publishing House, Beijing. (in Chinese)[中华人民共和国国家林业局 (2005). 全国森林资源统计(1999-2003). 中国林业出版社, 北京.] |
[21] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indi- rect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi:10.1029/2004GB002315. |
[22] | Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots.New Phytologist, 162, 437-446. |
[23] | Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data.Tree Physiology, 30, 669-688. |
[24] | Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066. |
[25] | Zhang X, Liu XF, Chen SD, Xiong DC, Lin WS, Lin TW, Lin CF (2014). Effects of soil warming on the temperature of soil in different depths.Journal of Subtropical Resources and Environment, 9, 89-91. (in Chinese with English abstract)[章宪, 刘小飞, 陈仕东, 熊德成, 林伟盛, 林廷武,林成芳 (2014). 土壤增温对不同深度土壤温度的影响. 亚热带资源与环境学报, 9, 89-91.] |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[9] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[10] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[11] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[12] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[13] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[14] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[15] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn