Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (8): 882-889.DOI: 10.17521/cjpe.2021.0324
• Research Articles • Previous Articles Next Articles
YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng()
Received:
2021-09-09
Accepted:
2021-11-20
Online:
2022-08-20
Published:
2022-01-07
Contact:
XU Zhen-Feng
Supported by:
YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment[J]. Chin J Plant Ecol, 2022, 46(8): 882-889.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0324
树种 Tree species | 凋落物现存量 Litter standing crop (kg·hm-2) | 郁闭度 Canopy density | 林下植物 Understory plant |
---|---|---|---|
香樟 Cinnamomum camphora | 986.8 ± 197.0a | 0.89 ± 0.04a | 喜旱莲子草、竹叶草等 Alternanthera philoxeroides, Oplismenus compositus, etc. |
大叶樟 C. austrosinense | 700.9 ± 106.4b | 0.85 ± 0.03a | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
油樟 C. longepaniculatum | 388.9 ± 92.5c | 0.90 ± 0.25a | 喜旱莲子草、蛇莓等 Alternanthera philoxeroides, Duchesnea indica, etc. |
天竺桂 C. japonicum | 160.2 ± 45.9cd | 0.73 ± 0.26a | 构树、喜旱莲子草、华西凤尾蕨等 Broussonetia papyrifera, Alternanthera philoxeroides, Pteris occidentalisinica, etc. |
桤木 Alnus cremastogyne | 136.9 ± 40.4cd | 0.66 ± 0.53b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
红椿 Toona ciliata | 17.1 ± 3.9d | 0.67 ± 0.58b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
香椿 T. sinensis | 15.6 ± 2.1d | 0.67 ± 0.05b | 构树、喜旱莲子草、竹叶草等 Broussonetia papyrifera, Alternanthera philoxeroides, Oplismenus compositus, etc. |
Table 1 Basic information of plantation in common garden (mean ± SE)
树种 Tree species | 凋落物现存量 Litter standing crop (kg·hm-2) | 郁闭度 Canopy density | 林下植物 Understory plant |
---|---|---|---|
香樟 Cinnamomum camphora | 986.8 ± 197.0a | 0.89 ± 0.04a | 喜旱莲子草、竹叶草等 Alternanthera philoxeroides, Oplismenus compositus, etc. |
大叶樟 C. austrosinense | 700.9 ± 106.4b | 0.85 ± 0.03a | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
油樟 C. longepaniculatum | 388.9 ± 92.5c | 0.90 ± 0.25a | 喜旱莲子草、蛇莓等 Alternanthera philoxeroides, Duchesnea indica, etc. |
天竺桂 C. japonicum | 160.2 ± 45.9cd | 0.73 ± 0.26a | 构树、喜旱莲子草、华西凤尾蕨等 Broussonetia papyrifera, Alternanthera philoxeroides, Pteris occidentalisinica, etc. |
桤木 Alnus cremastogyne | 136.9 ± 40.4cd | 0.66 ± 0.53b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
红椿 Toona ciliata | 17.1 ± 3.9d | 0.67 ± 0.58b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
香椿 T. sinensis | 15.6 ± 2.1d | 0.67 ± 0.05b | 构树、喜旱莲子草、竹叶草等 Broussonetia papyrifera, Alternanthera philoxeroides, Oplismenus compositus, etc. |
Fig. 1 Microbial biomass carbon (MBC), nitrogen (MBN) content and MBC:MBN among different tree species and soil layers (mean ± SE). Different uppercase letters indicate significant differences among the tree species in the same soil layer (p < 0.05), different lowercase letters indicate significant differences among the soil layers of the same tree species (p < 0.05).
因子 Factor | df | MBC含量 MBC content | MBN含量 MBN content | MBC:MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | SS (%) | F | p | SS (%) | F | p | SS (%) | ||
树种 Tree species (TS) | 6 | 20.01 | <0.01 | 52.07 | 10.68 | <0.01 | 31.30 | 5.50 | <0.01 | 32.12 |
土层 Soil layer (SL) | 2 | 27.12 | <0.01 | 23.52 | 35.78 | <0.01 | 34.97 | 2.73 | >0.05 | 5.32 |
树种×土层 TS × SL | 12 | 1.19 | >0.05 | 6.19 | 2.25 | <0.05 | 13.21 | 1.85 | >0.05 | 21.64 |
Table 2 Effects of tree species, soil layer and their inaction on soil microbial biomass carbon (MBC), nitrogen (MBN) content and their ratios
因子 Factor | df | MBC含量 MBC content | MBN含量 MBN content | MBC:MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | SS (%) | F | p | SS (%) | F | p | SS (%) | ||
树种 Tree species (TS) | 6 | 20.01 | <0.01 | 52.07 | 10.68 | <0.01 | 31.30 | 5.50 | <0.01 | 32.12 |
土层 Soil layer (SL) | 2 | 27.12 | <0.01 | 23.52 | 35.78 | <0.01 | 34.97 | 2.73 | >0.05 | 5.32 |
树种×土层 TS × SL | 12 | 1.19 | >0.05 | 6.19 | 2.25 | <0.05 | 13.21 | 1.85 | >0.05 | 21.64 |
[1] |
Baldrian P (2017). Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews, 41, 109-130.
DOI PMID |
[2] | Chen J, Luo TS, Zhou Z, Xu H, Chen DX, Li YD (2020). Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecologica Sinica, 40, 8528-8538. |
[陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德 (2020). 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 40, 8528-8538.] | |
[3] | Chen J, Zhao WQ, He HL, Luo L, Liu Q, Yang XC (2021). Effect of plant litter addition from different subalpine forest successional stages on Betula platyphylla seedling growth in western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 686-693. |
[陈静, 赵文强, 贺合亮, 罗林, 刘庆, 阳小成 (2021). 川西亚高山森林不同演替阶段植物凋落物添加对白桦幼苗生长的影响. 应用与环境生物学报, 27, 686-693.] | |
[4] |
Dalal RC (1998). Soil microbial biomass-What do the numbers really mean? Australian Journal of Experimental Agriculture, 38, 649-665.
DOI URL |
[5] |
Diao MM, Yang K, Zhu JJ, Li MC, Xu S (2020). Native broad-leaved tree species play key roles on maintaining soil chemical and microbial properties in a temperate secondary forest, Northeast China. Forest Ecology and Management, 462, 117971. DOI: 10.1016/j.foreco.2020.117971.
DOI URL |
[6] |
Hansen K, Vesterdal L, Schmidt IK, Gundersen P, Sevel L, Bastrup-Birk A, Pedersen LB, Bille-Hansen J (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133-2144.
DOI URL |
[7] | He RY, Yang WQ, Yang KJ, Li ZJ, Zhuang LY, Tan B, Xu ZF (2016). Soil C, N, P and microbial biomass properties of three dominant subalpine forests of western Sichuan, China. Chinese Journal of Applied and Environmental Biology, 22, 606-611. |
[贺若阳, 杨万勤, 杨开军, 李志杰, 庄丽燕, 谭波, 徐振锋 (2016). 川西亚高山3种森林土壤碳氮磷及微生物生物量特征. 应用与环境生物学报, 22, 606-611.] | |
[8] |
Heuck C, Weig A, Spohn M (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85, 119-129.
DOI URL |
[9] | Hu K, Tao JP, He DN, Huang K, Wang W (2019). Effects of root growth on dynamics of microbes and enzyme activities during litter decomposition. Chinese Journal of Applied Ecology, 30, 1993-2001. |
[胡凯, 陶建平, 何丹妮, 黄科, 王微 (2019). 林下植物根系对森林凋落物分解过程中微生物及酶活性的影响. 应用生态学报, 30, 1993-2001.]
DOI |
|
[10] | Huang JX, Huang LM, Lin ZC, Chen GS (2010). Controlling factors of litter decomposition rate in China’s forests. Journal of Subtropical Resources and Environment, 5(3), 56-63. |
[黄锦学, 黄李梅, 林智超, 陈光水 (2010). 中国森林凋落物分解速率影响因素分析. 亚热带资源与环境学报, 5(3), 56-63.] | |
[11] |
Kooch Y, Tarighat FS, Hosseini SM (2017). Tree species effects on soil chemical, biochemical and biological features in mixed Caspian lowland forests. Trees, 31, 863-872.
DOI URL |
[12] |
Laganière J, Paré D, Bergeron Y, Chen HYH (2012). The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology & Biochemistry, 53, 18-27.
DOI URL |
[13] | Li N, Zhao CY, Hao H, Zang F, Chang YP, Wang H, Yang JH (2021). Decomposition and its nutrients dynamic of Qinghai spruce leaf litter with elevation gradient in Qilian Mountains. Acta Ecologica Sinica, 41, 4493-4502. |
[李娜, 赵传燕, 郝虎, 臧飞, 常亚鹏, 汪红, 杨建红 (2021). 海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响. 生态学报, 41, 4493-4502.] | |
[14] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
DOI PMID |
[15] |
Li ZL, Zeng ZQ, Tian DS, Wang JS, Fu Z, Wang BX, Tang Z, Chen WN, Chen HYH, Wang CH, Yi CX, Niu SL (2020). The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization. Environmental Research Letters, 15, 034005. DOI: 10.1088/1748-9326/ab6a26.
DOI URL |
[16] | Liu B, Wu WF, Lin SZ, Lin KM (2019). Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests. Chinese Journal of Applied Ecology, 30, 1901-1910. |
[刘宝, 吴文峰, 林思祖, 林开敏 (2019). 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化. 应用生态学报, 30, 1901-1910.]
DOI |
|
[17] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30, 3135-3143. |
[刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] | |
[18] |
Liu SS, Zhou WJ, Kuang LH, Liu ZF, Song QH, Liu YT, Zhang YP, Lu ZY, Sha LQ (2020). Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 44, 1262-1272.
DOI URL |
[刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清 (2020). 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应. 植物生态学报, 44, 1262-1272.] | |
[19] | Ma ZL, Gao S, Yang WQ, Wu FZ, Tan B, Zhang XT (2015). Litter decomposition of six common tree species at different rainy periods in the subtropical region. Acta Ecologica Sinica, 35, 7553-7561. |
[马志良, 高顺, 杨万勤, 吴福忠, 谭波, 张玺涛 (2015). 亚热带常绿阔叶林6个常见树种凋落叶在不同降雨期的分解特征. 生态学报, 35, 7553-7561.] | |
[20] |
Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111, 601-614.
DOI URL |
[21] |
Ovington JD (1956). Studies of the development of woodland conditions under different trees: IV. The ignition loss, water, carbon and nitrogen content of the mineral soil. Journal of Ecology, 44, 171-179.
DOI URL |
[22] |
Peng Y, Schmidt IK, Zheng HF, Heděnec P, Bachega RL, Yue K, Wu FZ, Vesterdal L (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, 118510. DOI: 10.1016/j.foreco.2020.118510.
DOI URL |
[23] | Ren LJ, Wang C, Gu L, Zhang J, Wang XL (2012). VOCs components in Cinnamomum camphora forest and their variation in Hui mountain forest park, Wuxi. Journal of Chinese Urban Forestry, 10(3), 8-11. |
[任露洁, 王成, 古琳, 张晶, 王晓磊 (2012). 无锡惠山森林公园香樟林内挥发物成分及其变化研究. 中国城市林业, 10(3), 8-11.] | |
[24] |
Schurman JS, Baltzer JL (2012). Environmental correlates of tree species distributions vary among age classes in a northern temperate forest. Plant Ecology, 213, 1621-1632.
DOI URL |
[25] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
DOI URL |
[26] | Templera P, Findlay S, Lovett G (2003). Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biology & Biochemistry, 35, 607-613. |
[27] |
Teng YM, Zhan JY, Liu W, Zhang F, Wang C, Dong SK (2020). Larch or Mongolian pine? Effects of tree species on soil properties and microbial biomass with the consideration of afforestation time. Ecological Engineering, 158, 106074. DOI: 10.1016/j.ecoleng.2020.106074.
DOI URL |
[28] |
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4-18.
DOI URL |
[29] |
Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185-196.
DOI URL |
[30] | Wang HY, Li HL, Dong Z, Chen XC (2016). Study on the effects of different afforestation species on the soil improvement in coastal saline area. Research of Soil and Water Conservation, 23, 161-165. |
[王合云, 李红丽, 董智, 陈新闯 (2016). 滨海盐碱地不同造林树种改良土壤效果研究. 水土保持研究, 23, 161-165.] | |
[31] |
Wang P, Zhu WW, Niu YB, Fan J, Yu HL, Lai JS, Huang JY (2019). Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China. Chinese Journal of Plant Ecology, 43, 427-436.
DOI |
[王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹 (2019). 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 43, 427-436.]
DOI |
|
[32] | Wang T, Wan XH, Cheng L, Yang JQ, Zhang BB, Zou BZ, Wang SR, Yu ZP, Huang ZQ (2020). Effects of broadleaved tree species on soil microbial stoichiometry in clear-cut patches of Cunninghamia lanceolata plantation. Chinese Journal of Applied Ecology, 31, 3851-3858. |
[王涛, 万晓华, 程蕾, 杨军钱, 张冰冰, 邹秉章, 王思荣, 余再鹏, 黄志群 (2020). 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响. 应用生态学报, 31, 3851-3858.]
DOI |
|
[33] |
Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39, 1033-1043.
DOI URL |
[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.]
DOI |
|
[34] |
Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlesii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702.
DOI URL |
[魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[35] | Wu XL, Zhang SR, Pu YL, XU XX, Li Y (2019). Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan plain. Chinese Journal of Eco-Agriculture, 27, 1607-1616. |
[吴晓玲, 张世熔, 蒲玉琳, 徐小逊, 李云 (2019). 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析. 中国生态农业学报, 27, 1607-1616.] | |
[36] |
Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.
DOI URL |
[37] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[38] | Yu SC, Zhang WH, Li G, Yang B, Yu BY (2017). Effects of different crown densities on structure of Quercus wutaishanica populations in Huanglong Mountains, Northwest China. Acta Ecologica Sinica, 37, 1537-1548. |
[于世川, 张文辉, 李罡, 杨斌, 余碧云 (2017). 黄龙山林区不同郁闭度对辽东栎种群结构的影响. 生态学报, 37, 1537-1548.] | |
[39] | Zheng XZ, Zhang XX, Lin WS, Liu XF, Chu HY, Li RN, Yang ZJ (2018). Effects of different tree species on soil dissolved organic carbon and microbial biomass carbon in subtropical China. Journal of Fujian Normal University (Natural Science Edition), 34(6), 86-93. |
[郑宪志, 张星星, 林伟盛, 刘小飞, 楚海燕, 李若南, 杨智杰 (2018). 不同树种对土壤可溶性有机碳和微生物生物量碳的影响. 福建师范大学学报(自然科学版), 34(6), 86-93.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn