Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (6): 690-700.DOI: 10.17521/cjpe.2023.0382 cstr: 32100.14.cjpe.2023.0382
• Research Articles • Previous Articles Next Articles
YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun*()
Received:
2023-12-18
Accepted:
2024-02-26
Online:
2024-06-20
Published:
2024-02-26
Contact:
*FANG Jing-Yun(jyfang@urban.pku.edu.cn)
Supported by:
YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun. Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in Jianfengling, Hainan[J]. Chin J Plant Ecol, 2024, 48(6): 690-700.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0382
因子 Factor | 原始林 Primary forest | 次生林 Secondary forest |
---|---|---|
年平均气温 Mean annual air temperature (℃) | 19.7 ± 0.9 | 20.0 ± 0.7 |
年降水量 Mean annual precipitation (mm) | 2 198 | 2 198 |
年平均相对湿度 Mean annual relative humidity (%) | 89.4 ± 0.8 | 95.0 ± 0.7 |
平均胸径 Mean diameter at breast height (cm) | 22.43 | 10.18 |
平均树高 Mean tree height (m) | 18.19 | 9.31 |
物种丰富度 Species richness | 290 | 199 |
生物量 Biomass (t·hm-2) | 476.2 ± 59.3 | 505.5 ± 55.2 |
密度(株·hm-2) Stand density (ind·hm-2) | 4 092 | 7 717 |
基面积 Basal area (m2·hm-2) | 52.3 | 45.3 |
凋落物产量 Litterfall production (Mg·hm-2·a-1) | 8.2 ± 0.4 | 8.0 ± 0.9 |
土壤pH Soil pH | 4.5 ± 0.2 | 4.4 ± 0.1 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | 21.5 ± 0.2 | 25.9 ± 1.5 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | 1.7 ± 0.2 | 2.1 ± 0.1 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | 0.13 ± 0.03 | 0.16 ± 0.03 |
Table 1 Stand characteristics of primary and secondary forests in Jianfengling, Hainan (mean ± SD)
因子 Factor | 原始林 Primary forest | 次生林 Secondary forest |
---|---|---|
年平均气温 Mean annual air temperature (℃) | 19.7 ± 0.9 | 20.0 ± 0.7 |
年降水量 Mean annual precipitation (mm) | 2 198 | 2 198 |
年平均相对湿度 Mean annual relative humidity (%) | 89.4 ± 0.8 | 95.0 ± 0.7 |
平均胸径 Mean diameter at breast height (cm) | 22.43 | 10.18 |
平均树高 Mean tree height (m) | 18.19 | 9.31 |
物种丰富度 Species richness | 290 | 199 |
生物量 Biomass (t·hm-2) | 476.2 ± 59.3 | 505.5 ± 55.2 |
密度(株·hm-2) Stand density (ind·hm-2) | 4 092 | 7 717 |
基面积 Basal area (m2·hm-2) | 52.3 | 45.3 |
凋落物产量 Litterfall production (Mg·hm-2·a-1) | 8.2 ± 0.4 | 8.0 ± 0.9 |
土壤pH Soil pH | 4.5 ± 0.2 | 4.4 ± 0.1 |
土壤有机碳含量 Soil organic carbon content (mg·g-1) | 21.5 ± 0.2 | 25.9 ± 1.5 |
土壤总氮含量 Soil total nitrogen content (mg·g-1) | 1.7 ± 0.2 | 2.1 ± 0.1 |
土壤总磷含量 Soil total phosphorus content (mg·g-1) | 0.13 ± 0.03 | 0.16 ± 0.03 |
固定效应 Fixed effect | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性糖/淀粉 Soluble sugar/starch | 非结构性碳水化合物含量NSCs content |
---|---|---|---|---|
物种 Species | *** | *** | *** | *** |
森林类型 Forest type | ns | * | ns | ** |
氮添加 Nitrogen (N) addition | ns | ns | * | * |
磷添加 Phosphorus (P) addition | ns | ns | ns | ns |
氮添加×磷添加 N addition × P addition | ns | ns | ns | ns |
物种×森林类型 Species × forest type | ns | ** | ns | ns |
森林类型×氮添加 Forest type × N addition | ns | ns | *** | ns |
森林类型×磷添加 Forest type × P addition | ns | ** | ns | ns |
Table 2 Effects of plant species, forest types, nutrient additions and their interactions on leaf non-structural carbohydrates (NSCs) in Jianfengling, Hainan
固定效应 Fixed effect | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性糖/淀粉 Soluble sugar/starch | 非结构性碳水化合物含量NSCs content |
---|---|---|---|---|
物种 Species | *** | *** | *** | *** |
森林类型 Forest type | ns | * | ns | ** |
氮添加 Nitrogen (N) addition | ns | ns | * | * |
磷添加 Phosphorus (P) addition | ns | ns | ns | ns |
氮添加×磷添加 N addition × P addition | ns | ns | ns | ns |
物种×森林类型 Species × forest type | ns | ** | ns | ns |
森林类型×氮添加 Forest type × N addition | ns | ns | *** | ns |
森林类型×磷添加 Forest type × P addition | ns | ** | ns | ns |
Fig. 1 Contents of leaf starch, soluble sugar and non-structural carbohydrates (NSCs), and ratio of soluble sugar content to starch content of dominant plants in primary and secondary forests in Jianfengling, Hainan (mean ± SD). *, p < 0.05; **, p < 0.01; ns, p > 0.05.
Fig. 2 Contents of leaf soluble sugar, starch and total non-structural carbohydrates (NSCs), and ratio of soluble sugar content to starch content of dominant plants across fertilization treatments in primary (A-D) and secondary (E-H) forests in Jianfengling, Hainan. *, p < 0.05. CK, control; N25, nitrogen addition (25 kg·hm-2·a-1); N50, nitrogen addition (50 kg·hm-2·a-1); N100, nitrogen addition (100 kg·hm-2·a-1) ; N50P50, nitrogen (50 kg·hm-2·a-1) and phosphorus (50 kg·hm-2·a-1) addition; P50, phosphorus addition (50 kg·hm-2·a-1)。
Fig. 3 Linear relationships between leaf non-structural carbohydrates contents (NSCs) and the leaf pH, carbon content, specific leaf area (SLA), photosynthetic rates (A) and photosynthetic nitrogen use efficiency (PNUE) across plant species of primary forest in Jianfengling, Hainan.
Fig. 4 Linear relationships between leaf non-structural carbohydrates contents (NSCs) and the leaf pH, carbon content, specific leaf area (SLA), photosynthetic rates (A) and photosynthetic nitrogen use efficiency (PNUE) for all species of secondary forest in Jianfengling, Hainan.
Fig. 5 Relationship between leaf non-structural carbohydrates contents (NSCs) of dominant plants and soil chemical properties in primary forest in Jianfengling, Hainan.
Fig. 6 Linear relationships between leaf non-structural carbohydrates contents (NSCs) of dominant plants and soil chemical properties in secondary forest in Jianfengling, Hainan
[1] | Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013). Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197, 1142-1151. |
[2] | Chapin III FS, Schulze E, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447. |
[3] | Chen YQ, Wang YY, Yu YH, Wen ZJ, Peng ZT, Zhou Q, Mo QF (2022). Seasonal changes of leaf non-structural carbohydrate of plants in different layers and its responses to nitrogen and phosphorus additions in a secondary tropical forest. Acta Ecologica Sinica, 42, 255-265. |
[陈轶群, 王艺颖, 于耀泓, 温珍杰, 彭钟通, 周庆, 莫其锋 (2022). 热带次生林不同林层植物叶片非结构性碳水化合物的季节变化及其对氮磷添加的响应. 生态学报, 42, 255-265.] | |
[4] | Cornelissen JHC, Sibma F, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455. |
[5] | Cunha HFV, Andersen KM, Lugli LF, Santana FD, Aleixo IF, Moraes AM, Garcia S, Di Ponzio R, Mendoza EO, Brum B, Rosa JS, Cordeiro AL, Portela BTT, Ribeiro G, Coelho SD, et al. (2022). Direct evidence for phosphorus limitation on Amazon forest productivity. Nature, 608, 558-562. |
[6] |
Dietze MC, Sala AN, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI PMID |
[7] | Du E, de Vries W, Han W, Liu X, Yan Z, Jiang Y (2016). Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 16, 8571-8579. |
[8] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: a project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435. |
[9] | Du Y, Lu RL, Xia JY (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536. |
[10] | DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. |
[11] |
Gu B, Chang J, Min Y, Ge Y, Zhu Q, Galloway JN, Peng C (2013). The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 3, 2579. DOI: 10.1038/srep02579.
PMID |
[12] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[13] |
He WQ, Liu HY, Qi Y, Liu F, Zhu XR (2020). Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 26, 3627-3638.
DOI PMID |
[14] |
Lewis SL, Edwards DP, Galbraith D (2015). Increasing human dominance of tropical forests. Science, 349, 827-832.
DOI PMID |
[15] | Liu WD, Su JR, Li SF, Lang XD, Huang XB, Zhang ZJ (2017). Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province. Scientia Silvae Sinicae, 53(6), 1-9. |
[刘万德, 苏建荣, 李帅锋, 郎学东, 黄小波, 张志钧 (2017). 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析. 林业科学, 53(6), 1-9.] | |
[16] | Ma SH (2020). Effects of Nitrogen and Phosphorus Addition on Main Processes of Carbon Cycle in Tropical Montane Rainforests in Jianfengling, Hainan Island, China. PhD dissertation, Peking University, Beijing. |
[马素辉 (2020). 氮和磷添加对海南尖峰岭热带山地雨林碳循环主要过程的影响. 博士学位论文, 北京大学, 北京]. | |
[17] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[18] |
Sulpice R, Flis A, Ivakov AA, Apelt F, Krohn N, Encke B, Abel C, Feil R, Lunn JE, Stitt M (2014). Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Molecular Plant, 7, 137-155.
DOI PMID |
[19] |
Thalmann M, Santelia D (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214, 943-951.
DOI PMID |
[20] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[21] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
PMID |
[22] | Wang HF, He BX, Zeng LH, Zhou Q, Zhong WH (2008). Studies on the distribution, types and area of the tropical secondary forests in China. Forestry Science and Technology of Guangdong Province, 24(2), 65-73. |
[王洪峰, 何波祥, 曾令海, 周庆, 钟伟华 (2008). 中国热带次生林分布、类型与面积研究. 广东林业科技, 24(2), 65-73.] | |
[23] | Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S (2015). Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 8, 48-54. |
[24] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI PMID |
[25] | Xu H, Li YD, Liu S, Zang R, He F, Spence JR (2015). Partial recovery of a tropical rain forest a half-century after clear-cut and selective logging. Journal of Applied Ecology, 52, 1044-1052. |
[26] | Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[27] | Yu QS, Ma SH, Ni XF, Jiang L, Zhou Z, Zhu JL, Ji CJ, Tang ZY, Cheng XL, Fang JY (2023). A test of the mycorrhizal- associated nutrient economy framework in two types of tropical rainforests under nutrient enrichments. Forest Ecosystems, 10, 100083. DOI: 10.1016/j.fecs.2022.100083. |
[28] | Yu Q, Ma S, Ni X, Ni X, Guo Z, Tan X, Zhong M, Abu Hanif M, Zhu J, Ji C, Zhu B, Fang J (2022a). Long-term phosphorus addition inhibits phosphorus transformations involved in soil arbuscular mycorrhizal fungi and acid phosphatase in two tropical rainforests. Geoderma, 425, 116076. DOI: 10.1016/j.geoderma.2022.116076. |
[29] | Yu QS, Ni XF, Cheng XL, Ma SH, Tian D, Zhu B, Zhu JL, Ji CJ, Tang ZY, Fang JY (2022b). Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment, 846, 157456. DOI: 10.1016/j.scitotenv.2022.157456. |
[30] |
Zhang G, Maillard P, Mao Z, Brancheriau L, Engel J, Gérard B, Fortunel C, Maeght JL, Martínez-Vilalta J, Ramel M, Nourissier-Mountou S, Fourtier S, Stokes A (2022). Non-structural carbohydrates and morphological traits of leaves, stems and roots from tree species in different climates. BMC Research Notes, 15, 251. DOI: 10.1186/s13104-022-06136-7.
PMID |
[31] | Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017). Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40. |
[32] |
Zhou Z, Jiang L, Du EZ, Hu HF, Li YD, Chen DX, Fang JY (2013). Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. Journal of Plant Ecology, 6, 325-334.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn