Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (2): 102-115.doi: 10.17521/cjpe.2014.0366

• Research Articles • Previous Articles     Next Articles

Canopy closure estimation in a temperate forest using airborne LiDAR and LANDSAT ETM+ data

Rui-Ying ZHANG1,2, Yong PANG2, Zeng-Yuan LI2,*(), Yu-Hai BAO1   

  1. 1College of Geographical Science, Inner Mongolia Normal University, Hohhot 010010, China
    and
    2Institute of Forest Resource Information Technique, Chinese Academy of Forestry, Beijing 100091, China
  • Online:2016-03-08 Published:2016-02-10
  • Contact: Zeng-Yuan LI E-mail:zengyuan.li@caf.ac.cn

Abstract:

Aims Forest canopy closure is one of the essential factors in forest survey, and plays an important role in forest ecosystem management. It is of great significance to study how to apply LiDAR (light detection and ranging) data efficiently in remote sensing estimation of forest canopy closure. LiDAR can be used to obtain data fast and accurately and therefore be used as training and validation data to estimate forest canopy closure in large spatial scale. It can compensate for the insufficiency (e.g. labor-intensive, time-consuming) of conventional ground survey, and provide foundations to forest inventory.Methods In this study, we estimated canopy closure of a temperate forest in Genhe forest of Da Hinggan Ling area, Nei Mongol, China, using LiDAR and LANDSAT ETM+ data. Firstly, we calculated the canopy closure from ALS (Airborne Laser Scanning) high density point cloud data. Then, the estimated canopy closure from ALS data was used as training and validation data to modeling and inversion from eight vegetation indices computed from LANDSAT ETM+ data. Three approaches, multi-variable stepwise regression (MSR), random forest (RF) and Cubist, were developed and tested to estimate canopy closure from these vegetation indices, respectively.Important findings The validation results showed that the Cubist model yielded the highest accuracy compared to the other two models (determination coefficient (R2) = 0.722, root mean square error (RMSE) = 0.126, relative root mean square error (rRMSE) = 0.209, estimation accuracy (EA) = 79.883%). The combination of LiDAR data and LANDSAT ETM+ showed great potential to accurately estimate the canopy closure of the temperate forest. However, the model prediction capability needs to be further improved in order to be applied in larger spatial scale. More independent variables from other remotely sensed datasets, e.g. topographic data, texture information from high-resolution imagery, should be added into the model. These variables can help to reduce the influence of optical image, vegetation indices, terrain and shadow and so on. Moreover, the accuracy of the LiDAR-derived canopy closure needs to be further validated in future studies.

Key words: LANDSAT ETM+, airborne laser scanning (ALS), forest canopy closure, vegetation index, multi- variable stepwise regression, random forest, Cubist

Table 1

The spectrum information and radiometric calibration parameters of LANDSAT ETM+ data"

波段名称
Band name
波段号
Band number
波长范围
Wavelength range (µm)
对应的原始波段号
Corresponding original band number
增益系数
Gain
红 Red 1 0.63-0.69 3 508
近红外 Near infrared 2 0.75-0.90 4 254
短波红外1 Short wave infrared 1 3 1.55-1.75 5 363
短波红外2 Short wave infrared 2 4 2.09-2.35 7 423

Fig. 1

The flowchart of forest canopy closure inversion based on LANDSAT ETM+ image."

Fig. 2

The calculation result of canopy closure. A, Canopy height model (m). B, Canopy closure result from calculation."

Fig. 3

The image of sample selecting range (the red area is the training sample and the yellow area is the validation sample)."

Fig. 4

The segmentation results of LANDSAT ETM+ image and canopy closure. A, The segmentation result of LANDSAT ETM+ image. B, The segmentation result of canopy closure."

Fig. 5

The scatterplot of model accuracy validation. A, multi-variable stepwise regret ssion (MSR) model-the scatterplot of model accuracy validation. B, Random forest (RF) model-the scatterplot of model accuracy validation. C, Cubist model-the scatterplot of model accuracy validation. CHM, canopy height model; RMSE, root mean square error."

[1] Birth GS, McVey GR (1968). Measuring the color of growing turf with a reflectance spectrophotometer.Agronomy Journal, 60, 640-643.
[2] Breiman L (2001). Random forests.Machine Learning, 45, 5-32.
[3] Chen C, Zhu YJ, Ju WM (2011). Retrieval of subtropical forest canopy closure from remote sensing by using akaike information criterion and artificial neural network model.Acta Agriculturae Jiangxi, 23(5), 149-153.(in Chinese with English abstract)[陈崇, 朱延钧, 居为民 (2011). 基于赤池信息准则和人工神经网络的亚热带森林郁闭度遥感估算. 江西农业学报, 23(5), 149-153.]
[4] Colombo R, Bellingeri D, Fasolini D, Marino CM (2003). Retrieval of leaf area index in different vegetation types using high resolution satellite data.Remote Sensing of Environment, 86, 120-131.
[5] Coulston JW, Moisen GG, Wilson BT, Finco MV, Cohen WB, Brewer CK (2012). Modeling percent tree canopy cover: A pilot study.Photogrammetric Engineering & Remote Sensing, 78, 715-727.
[6] Deering DW, Rouse JW, Haas RH, Schell JA (1975). Measuring 'Forage production' of grazing units from LANDSAT MSS data. International Symposium on Remote Sensing of Environment, 10th, Ann Arbor, Mich, 1169-1178.
[7] Du WF, Wang FZ, Li Q (1999). Some suggestions for increasing accuracy of canopy closure investigation. Forest resources management, (3), 62-64(in Chinese).[杜文峰, 王凤臻, 李庆 (1999). 提高郁闭度调查精度的几点建议. 林业资源管理, (3), 62-64.]
[8] Du XM, Cai TJ, Ju CY (2008). Estimation of forest canopy closure by using parital least square regression.Chinese Journal of Applied Ecology, 19, 273-277.(in Chinese with English abstract)[杜晓明, 蔡体久, 琚存勇 (2008). 采用偏最小二乘回归方法估测森林郁闭度. 应用生态学报, 19, 273-277.]
[9] Fang KN, Wu JB, Zhu JP, Xie BC (2011). A review of technologies on random forest.Statistics & Information Tribune, 25(3), 32-37.(in Chinese with English abstract)[方匡南, 吴见彬, 朱建平, 谢邦昌 (2011). 随机森林方法研究综述. 统计与信息论坛,25(3), 32-37.]
[10] Fu T, Pang Y, Huang QF, Liu QW, Xu GC (2011). Prediction of subtropical forest parameters using airborne laser scanner.Journal of Remote Sensing, 15, 1092-1104.(in English and Chinese)[付甜, 庞勇, 黄庆丰, 刘清旺, 徐光彩 (2011). 亚热带森林参数的机载激光雷达估测. 遥感学报, 15, 1092-1104.]
[11] Gao YF, Li ZG, Yang ST, Liu XC, Cao Y (2012). Study on canopy density retrieval method from SPOT5.Research of Soil and Water Conservation, 19, 268-270.(in Chinese with English abstract)[高云飞, 李智广, 杨胜天, 刘宪春, 曹勇 (2012). 基于SPOT5影像的郁闭度反演方法. 水土保持研究, 19, 268-270.]
[12] Gleason CJ, Im J (2012). Forest biomass estimation from airborne LiDAR data using machine learning approaches.Remote Sensing of Environment, 125, 80-91.
[13] Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013). High-resolution global maps of 21st-century forest cover change.Science, 342, 850-853.
[14] Hudak AT, Evans JS, Smith AMS (2009). LiDAR utility for natural resource managers.Remote Sensing, 1, 934-951.
[15] Huete AR (1988). A soil-adjusted vegetation index (SAVI).Remote Sensing of Environment, 25, 295-309.
[16] Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011). Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115, 1065-1080.
[17] Kuhn M, Witson S, Keefer C, Coulter N (.
[18] Lei CL, Ju CY, Cai TJ, Jing X, Wei XH, Di XY (2012). Estimating canopy closure density and above-ground tree biomass using partial least square methods in Chinese boreal forests.Journal of Forestry Research, 23, 191-196.
[19] Li YN, Zhang BL, Qin SY, Li SY, Huang XR (2008). Review of research and application of forest canopy closure and its measuring methods.World Forestry Research, 21(1), 41-46.(in Chinese with English abstract)[李永宁, 张宾兰, 秦淑英, 李帅英, 黄选瑞 (2008). 郁闭度及其测定方法研究与应用. 世界林业研究,21, 41-46.]
[20] Liu DW, Sun GQ, Pang Y, Cai YL (2006). Estimation of forest closure using LANDSAT TM data.Remote Sensing Information, (1), 41-42.(in Chinese with English abstract)[刘大伟, 孙国清, 庞勇, 蔡玉林 (2006). 利用LANDSAT TM数据对森林郁闭度进行遥感分级估测. 遥感信息, (1), 41-42.]
[21] Moeser D, Roubinek J, Schleppi P, Morsdorf F, Jonas T (2014). Canopy closure, LAI and radiation transfer from Airborne LiDAR synthetic images.Agricultural and Forest Meteorology, 197(19), 158-168.
[22] Nelson R, Krabill W, MacLean G (1984). Determining forest canopy characteristics using airborne laser data.Remote Sensing of Environment, 15, 201-212.
[23] Nelson R, Krabill W, Tonelli J (1988). Estimating forest biomass and volume using airborne laser data.Remote Sensing of Environment, 24, 247-267.
[24] Pang Y, Huang KB, Li ZY, Qin XL, Chen EX (2011). Forest aboveground biomass analysis using remote sensing in the Greater Mekong Subregion. Recourses Science, 33, 1863-1869.(in Chinese with English abstract)[庞勇, 黄克标, 李增元, 覃先林, 陈尔学 (2011). 基于遥感的湄公河次区域森林地上生物量分析 . 资源科学,33, 1863-1869.]
[25] Pang Y, Li ZY (2012). Inversion of biomass components of the temperate forest using airborne LiDAR technology in Xiaoxing'an Mountains, Northeastern of China.Chinese Journal of Plant Ecology, 36, 1095-1105.(in Chinese with English abstract)[庞勇, 李增元 (2012). 基于机载激光雷达的小兴安岭温带森林组分生物量反演 . 植物生态学报,36, 1095-1105.]
[26] Pang Y, Li ZY, Chen EX, Sun GQ (2005). LiDAR remote sensing technology and its application in forestry.Scientia Silvae Sinicae, 41(3), 129-136.(in Chinese with English abstract)[庞勇, 李增元, 陈尔学, 孙国清 (2005). 激光雷达技术及其在林业上的应用. 林业科学,41(3), 129-136.]
[27] Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010). Quantification of live aboveground forest biomass dynamics with LANDSAT time-series and field inventory data: A comparison of empirical modeling approaches.Remote Sensing of Environment, 114, 1053-1068.
[28] Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994). A modified soil adjusted vegetation index.Remote Sensing of Environment, 48, 119-126.
[29] Richardson AJ, Wiegand CL (1977). Distinguishing vegetation from soil background information.Phote Engin & Remote Sense, 43, 1541-1552.
[30] Rosette JAB, North PRJ, Suárez JC (2008). Vegetation height estimates for a mixed temperate forest using satellite laser altimetry.International Journal of Remote Sensing, 29, 1475-1493.
[31] Roujean JL, Breon FM (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements.Remote Sensing of Environment, 51, 375-384.
[32] Rouse JW, Haas RH, Schell JA, Deering DW (1974). Monitoring vegetation systems in Great Plains with ERTS.NASA Special Publication, 351, 309.
[33] Sexton JO, Song XP, Feng M, Noojipady P, Anand A, Huang CQ, Kim D, Collins KM, Channan S, Dimiceli C, Townshend JR (2014). Global, 30-m resolution continuous fields of tree cover: LANDSAT-based rescaling of MODIS vegetation continuous fields with LiDAR-based estimates of error.International Journal of Digital Earth, 6, 427-448.
[34] Soininen A (.
[35] Tan BX, Li ZY, Chen EX, Pang Y, Lei YC (2006). Estimating forest crown closure using hyperion hyperspectral data.Journal of Beijing Forestry University, 28(3), 95-101.(in Chinese with English abstract)[谭炳香, 李增元, 陈尔学, 庞勇, 雷渊才 (2006). Hyperion高光谱数据森林郁闭度定量估测研究 . 北京林业大学学报,28(3), 95-101.]
[36] Wang T (2010). Application on M5 algorithm in sensory evaluation.Microcomputer Information, 26(11-3), 229-231.(in Chinese with English abstract)[王涛 (2010). M5算法在感觉评估中的应用. 微计算机信息, 26(11-3), 229-231.]
[37] Wang YF, Pang Y, Shu QT (2013). Counter-estimation on aboveground biomass of Hevea brasiliensis plantation by remote sensing with random forest algorithm--A case study of Jinghong.Journal of Southwest Forestry University, 33(6), 38-45.(in Chinese with English abstract)[王云飞, 庞勇, 舒清态 (2013). 基于随机森林算法的橡胶林地上生物量遥感反演研究----以景洪市为例 . 西南林业大学学报,33(6), 38-45.]
[38] Wu Y, Zhang DR, Zhang HK, Wu HG (2012). Remote sensing estimation of canopy density combined with texture features.Scientia Silvae Sinicae, 48(2), 48-53.(in Chinese with English abstract)[吴飏, 张登荣, 张汉奎, 武红敢 (2012). 结合图像纹理特征的森林郁闭度遥感估测. 林业科学, 48(2), 48-53.]
[39] Xu D, Peng DL (2013). Estimation of forest canopy closure based on dimidiate pixel model.Journal of Northeast Forestry University, 41(2), 119-122.(in Chinese with English abstract) [徐定, 彭道黎 (2013). 基于像元二分模型的森林郁闭度估测方法. 东北林业大学学报,41(2), 119-122.]
[40] Zeng T, Ju CY, Cai TJ, Liu WB, Yao YF (2010). Selection of parameters for estimation canopy closure density using variable importance of projection criterion.Journal of Beijing Forestry University, 32(6), 37-41.(in Chinese with English abstract)[曾涛, 琚存勇, 蔡体久, 刘文彬, 姚月锋 (2010). 利用变量投影重要性准则筛选郁闭度估测参数 . 北京林业大学学报,32(6), 37-41.]
[41] Zhang J, Li XS, Wu BF (2014). Forest cover estimation based on classification and regression trees of Miyun Reservoir upstream area. Remote Sensing Technology and Application, 29, 394-400.(in Chinese with English abstract)[张瑾, 李晓松, 吴炳方 (2014). 基于分类回归树的密云水库上游森林覆盖度遥感估算. 遥感技术与应用,29, 394-400.]
[42] Zhao YS (2003).Analysis Principle and Method of Remote Sensing Applications. 2nd edn. Science Press,Beijing. 368-380.(in Chinese)[赵英时 (2003). 遥感应用分析原理与方法(第二版). 科学出版社, 北京. 368-380.]
[43] Zheng DM, Zeng WS, Zhi CG, Shi PC (2013). Remote sensing estimation of forest canopy closure in forests of Three Gorges Reservoir Region.Journal of Central South Forestry University, 33(9), 1-4.(in Chinese with English abstract)[郑冬梅, 曾伟生, 智长贵, 施鹏程 (2013). 三峡库区森林郁闭度的遥感定量估测. 中南林业科技大学学报, 33(9), 1-4.]
[44] Zou J, Zhuge XD (2011). Forest canopy closure and the measured methodology.Heilongjiang Science and Technology Information, 35, 290.(in Chinese) [邹杰, 诸葛祥东 (2011). 森林郁闭度及其测定方法 . 黑龙江科技信息,35, 290.]
[1] Yun ZHAO, Rong-Liang JIA, Yan-Hong GAO, Yuan-Yuan ZHOU, Jia-Ling TENG. Characteristics of normalized difference vegetation index of biological soil crust during the succession process of artificial sand-fixing vegetation in the Tengger Desert, Northern China [J]. Chin J Plan Ecolo, 2017, 41(9): 972-984.
[2] Lei ZHANG, Lin-lin WANG, Shi-Rong LIU, Peng-Sen SUN, Zhen YU, Shu-Tao HUANG, Xu- Dong ZHANG. An evaluation of four threshold selection methods in species occurrence modelling with random forest: Case studies with Davidia involucrata and Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2017, 41(4): 387-395.
[3] Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China [J]. Chin J Plan Ecolo, 2017, 41(3): 337-347.
[4] GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plan Ecolo, 2017, 41(12): 1273-1288.
[5] Fang LI, Wen-Zhi ZHAO. Changes in normalized difference vegetation index of deserts and dunes with precipitation in the middle Heihe River Basin [J]. Chin J Plan Ecolo, 2016, 40(12): 1245-1256.
[6] ZHANG Qi,YUAN Xiu-Liang,CHEN Xi,LUO Ge-Ping,LI Long-Hui. Vegetation change and its response to climate change in Central Asia from 1982 to 2012 [J]. Chin J Plan Ecolo, 2016, 40(1): 13-23.
[7] ZHANG Lei-Ming,CAO Pei-Yu,ZHU Ya-Ping,LI Qing-Kang,ZHANG Jun-Hui,WANG Xiao-Ling,DAI Guan-Hua,LI Jin-Gong. Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain [J]. Chin J Plan Ecolo, 2015, 39(12): 1156-1165.
[8] SUN Xiao-Peng, WANG Tian-Ming, KOU Xiao-Jun, and GE Jian-Ping. Normalized difference vegetation index dynamic change and its driving factor analysis with long time series in the Jinghe River watershed on the Loess Plateau of China [J]. Chin J Plan Ecolo, 2012, 36(6): 511-521.
[9] ZHANG Fa-Wei, LI Ying-Nian, CAO Guang-Min, LI Feng-Xia, YE Guang-Ji, LIU Ji-Hong, WEI Yong-Lin, and ZHAO Xin-Quan. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China [J]. Chin J Plan Ecolo, 2012, 36(3): 187-198.
[10] SONG Chuang-Ye, LIU Hui-Ming, LIU Gao-Huan, and HUANG Chong. Applying generalized additive model to integrate digital elevation model and remotely sensed data to predict the vegetation distribution [J]. Chin J Plan Ecolo, 2012, 36(10): 1106-1119.
[11] YU Zhen, SUN Peng-Sen, and LIU Shi-Rong. Response of normalized difference vegetation index in main vegetation types to climate change and their variations in different time scales along a North-South Transect of Eastern China [J]. Chin J Plan Ecolo, 2011, 35(11): 1117-1126.
[12] WANG Wen-Zhi, LIU Xiao-Hong, CHEN Ta, AN Wen-Ling, XU Guo-Bao. Reconstruction of regional NDVI using tree-ring width chronologies in the Qilian Mountains, northwestern China [J]. Chin J Plan Ecolo, 2010, 34(9): 1033-1044.
[13] YU Zhen, SUN Peng-Sen, LIU Shi-Rong. Phenological change of main vegetation types along a North-South Transect of Eastern China [J]. Chin J Plan Ecolo, 2010, 34(3): 316-329.
[14] ZHANG Zhi-Dong, ZANG Run-Guo. MODELLING THE SPATIAL DISTRIBUTION OF ABOVEGROUND BIOMASS BASED ON VEGETATION INDEX IN A TROPICAL FOREST IN BAWANG- LING, HAINAN ISLAND, SOUTH CHINA [J]. Chin J Plan Ecolo, 2009, 33(5): 833-841.
[15] SONG Kai-Shan, ZHANG Bai, WANG Zong-Ming, LIU Dian-Wei, LIU Huan-Jun. SOYBEAN CHLOROPHYLL A CONCENTRATION ESTIMATION MODELS BASED ON WAVELET-TRANSFORMED, IN SITU COLLECTED, CANOPY HYPERSPECTRAL DATA [J]. Chin J Plan Ecolo, 2008, 32(1): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xinyi Huang, Jiakuan Chen. Problems facing wetland nature reserves in China in the new era and recommendations for overcoming them[J]. Biodiv Sci, 2012, 20(6): 774 -778 .
[2] Feng Zongwei, Chen Chuying, Zhang Jiawu, Zhao Jilu, Wang Kaiping, Zeng Shiyu. The Biological Productivity on Chinese fir Stands at Different Zone[J]. Chin J Plan Ecolo, 1984, 8(2): 93 -100 .
[3] Hong Qian. Relationship between clade age and temperature for angiosperm tree species in forest communities along an elevational gradient in tropical Asia[J]. J Plant Ecol, 2017, 10(4): 618 -625 .
[4] Hongfeng Zhao, Xuebin Gao, Fumin Lei, Xinyang Liu, Ning Zheng, Zuohua Yin. On the status and distribution of threatened birds of China[J]. Biodiv Sci, 2005, 13(1): 12 -19 .
[5] Pan Kai-Yu. New Taxa of Briggsia Craib (Gesneriaceae) from China[J]. J Syst Evol, 1988, 26(6): 450 -457 .
[6] Liao Lan-yu, Ding Ming-mao, Zhang Zhu-ping, Yi Wei-min, Guo Gui-zhong, Huang Zhong-liang. Root Biomass and its Nitrogen Dynamic of Some Communities in Dinghushan[J]. Chin J Plan Ecolo, 1993, 17(1): 56 -60 .
[7] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[8] GUO Zhong-Wei, GAN Ya-Ling. A strategy for ecosystem conservation based on function and spatial pattern[J]. Biodiv Sci, 2002, 10(4): 399 -408 .
[9] Xu Wen-duo. The Relation between the Zonal Distribution of Types of Vegetation and the Climate in Northeast China[J]. Chin J Plan Ecolo, 1986, 10(4): 254 -263 .
[10] He Yuan-qiu, Wang Ming-zhu, Zhao Qi-guo. Effect of Precipitation on Chemical Element Migration in Soil of Tropical Monsoon Forest and Rubber Plantation[J]. Chin J Plan Ecolo, 1992, 16(3): 266 -275 .