Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 173-184.doi: 10.17521/cjpe.2017.0209

• Research Articles • Previous Articles     Next Articles

Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest

CHEN Ri-Sheng1,KANG Wen-Xing1,2,3,*(),ZHOU Yu-Quan1,TIAN Da-Lun1,2,3,XIANG Wen-Hua1,3   

  1. 1Central South University of Forestry and Technology, Changsha 410004, China

    2National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China;

    3Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, Hunan 418307, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: Wen-Xing KANG
  • Supported by:
    Supported by the National Forestry Public Welfare Industry Research Project(201104009);the Ministry of Science and Technology Public Welfare Research Project(2007-04-15);the National Field Science Observation and Research Station Project(20080615)


Aims The purpose of this study is to investigate the characteristics of nutrient cycling in Cunninghamia lanceolata plantations) with different ages, and to provide scientific basis for the management of high-yield plantations in China.

Methods In this study, we used the ecological data of the past 25 years in Hunan Huitong Ecological Station and analyzed the nutrient cycling characteristics of the C.lanceolata plantation forests with different ages according to the law of tree growth and the dynamics of nutrient uptake.

Important findings For most nutrients, their concentrations ranked in order as leaf > twig > bark > root > stem for all C. lanceolata trees with any ages. When the tree age was less than 12 years, nutrient concentrations increased with age, while they decreased with age when the tree was more than 12 years old. The changes in average annual nutrient uptake with age showed two peaks. Nutrient return gradually increases with age. For the same age, the nutrient use efficiency followed the order of phosphorus (P) > potassium (K) > nitrogen (N) > magnesium (Mg) > calcium (Ca). After the stand was closed, the nutrient utilization efficiency increases with the growth and development of trees. The cycling intensity of Ca and Mg was greater than that of N and P at the same stand age. The changes in nutrient cycling intensity with age varying curve with stand age acted as parabolic curve. Utilization of N, P and K was longer than displayed a parabolic shape for all elements. The utilization time of each element got shorter with increasing stand age. These results suggested that the nutrient uptake in different growthstages was not only controlled by the quantity of biomass, but also affected by the difference in nutrient concentration between previous and current stages. The nutrient cycling processes were jointly controlled by the mechanisms of nutrient redistribution and storage in Cunninghamia lanceolata,during the growth and development stages, and the nutrient use efficiency during different growth stages.

Key words: Cunninghamia lanceolata, plantation, different stand ages, nutrient cycle, Hunan, Huitong

Table 1

Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) content of Cunninghamia lanceolata organs at different stand ages (mean ± SD) (g·kg-1)"

林龄 Stand age元素 Element干 Stem wood皮 Stem bark枝 Twig叶 Needle根 Root合计 Total
氮 N1.69 ± 0.089aA#3.89 ± 0.169bA%5.12 ± 0.325cA*10.86 ± 0.567dA^2.93 ± 0.162eA@24.49A*
磷 P0.10 ± 0.006aB*0.55 ± 0.018bB*0.76 ± 0.039cB&0.89 ± 0.037dB*0.26 ± 0.015eB*2.56B@
钾 K0.64 ± 0.033aC@4.21 ± 0.204bC%4.92 ± 0.095cC@5.63 ± 0.419dC&2.27 ± 0.145eC%17.67C!
钙 Ca0.51 ± 0.026aD&3.84 ± 0.227bD!5.54 ± 0.378cD$9.97 ± 0.494dD@2.12 ± 0.128eD*21.98D*
镁 Mg0.15 ± 0.007aE$0.68 ± 0.052bE*2.15 ± 0.162cE@2.45 ± 0.164dE*0.63 ± 0.033eE&6.43E%
氮 N1.75 ± 0.073aA&4.39 ± 0.212bA&5.88 ± 0.342cA^11.42 ± 0.513dA*3.19 ± 0.176eA!26.63A&
磷 P0.13 ± 0.006aB*0.63 ± 0.033bB%0.80 ± 0.051cB*0.93 ± 0.052dB&0.28 ± 0.021eB*2.73B#
钾 K0.69 ± 0.032aC$4.54 ± 0.224bC&5.12 ± 0.329cC*5.87 ± 0.425dC*2.35 ± 0.123eC^18.57C@
钙 Ca0.57 ± 0.029aD!4.14 ± 0.239bD#5.96 ± 0.347cD*10.90 ± 0.573dD!2.16 ± 0.139eD%23.13D&
镁 Mg0.17 ± 0.005aE*0.74 ± 0.068bE&2.44 ± 0.173cE!2.68 ± 0.189dE&0.69 ± 0.038eE*6.72E^
氮 N1.72 ± 0.074aA#4.28 ± 0.224bA*5.72 ± 0.397cA%11.02 ± 0.521dA%3.12 ± 0.159eA@25.86A^
磷 P0.12 ± 0.005aB*0.61 ± 0.036bB%0.77 ± 0.046cB&0.90 ± 0.044dB&0.27 ± 0.017eB*2.67B@
钾 K0.64 ± 0.037aC@4.32 ± 0.245bC#5.07 ± 0.318cC@5.75 ± 0.433dC$2.18 ± 0.131eC@17.96C#
钙 Ca0.52 ± 0.026aD&4.05 ± 0.239bD$5.36 ± 0.335cD@10.17 ± 0.492dD$2.05 ± 0.122eD!22.15D^
镁 Mg0.14 ± 0.004aE$0.70 ± 0.059bE&2.37 ± 0.125cE$2.64 ± 0.137dE$0.62 ± 0.031eE&6.47E$
氮 N1.70 ± 0.071aA#4.20 ± 0.219bA#5.63 ± 0.367cA@10.87 ± 0.486dA@3.01 ± 0.143eA*25.41A%
磷 P0.10 ± 0.005aB*0.60 ± 0.033bB%0.75 ± 0.039cB&0.88 ± 0.049dB*0.25 ± 0.019eB*2.58B@
钾 K0.61 ± 0.033aC@4.25 ± 0.237bC!4.94 ± 0.294cC!5.68 ± 0.429dC$2.13 ± 0.118eC@17.72C%
钙 Ca0.48 ± 0.023aD^3.97 ± 0.246bD&5.23 ± 0.326cD#10.06 ± 0.473dD$1.98 ± 0.124eD$21.84D%
镁 Mg0.11 ± 0.005aE$0.71 ± 0.053bE&2.31 ± 0.176cE&2.59 ± 0.147dE#0.59 ± 0.028eE&6.27E*
氮 N1.68 ± 0.076aA#4.14 ± 0.234bA!5.57 ± 0.351cA!10.78 ± 0.445dA#2.90 ± 0.152eA*25.07A$
磷 P0.09 ± 0.004aB*0.57 ± 0.031bB%0.72 ± 0.034cB&0.87 ± 0.043dB*0.24 ± 0.018eB*2.49B@
钾 K0.58 ± 0.034aC@4.18 ± 0.248bC!4.88 ± 0.305cC!5.60 ± 0.396dC$2.04 ± 0.115eC@17.28C*
钙 Ca0.45 ± 0.026aD$3.92 ± 0.233bD&5.12 ± 0.315cD!9.98 ± 0.415dD$1.92 ± 0.126eD$21.39D@
镁 Mg0.10 ± 0.005aE$0.65 ± 0.055bE&2.26 ± 0.156cE*2.55 ± 0.175dE#0.55 ± 0.024eE&6.11E#

Table 2

Nutrient uptake of Cunninghamia lanceolata forest at different ages"

Stand age
Biomass (t·hm-2)
养分元素 Nutrient element合计
氮 Nitrogen磷 Phosphorus钾 Potassium钙 Calcium镁 Magnesium
1 to 7 years
43.17应吸收 Required absorption (kg·hm-2)204.3818.68124.92170.6545.82564.45
NTAPB (kg·hm-2)
实际吸收 Actual absorption (kg·hm-2)204.3818.68124.92170.6545.82564.45
Average annual actual absorption (kg·hm-2·a-1)
8 to 11 years
42.51应吸收 Required absorption (kg·hm-2)229.0222.35145.73200.8957.86655.85
NTAPB (kg·hm-2)
实际吸收 Actual absorption (kg·hm-2)241.5623.81151.16208.7561.98687.26
Average annual actual absorption (kg·hm-2·a-1)
12 to
16 years
64.12应吸收 Required absorption (kg·hm-2)286.4329.79197.72264.8577.47856.26
NTAPB (kg·hm-2)
实际吸收 Actual absorption (kg·hm-2)279.4027.65191.35255.3673.36827.12
Average annual actual absorption (kg·hm-2·a-1)
17 to
20 years
66.03应吸收 Required absorption (kg·hm-2)293.1826.83178.72232.9965.31797.03
NTAPB (kg·hm-2)
实际吸收 Actual absorption (kg·hm-2)286.5624.71173.10223.9761.70770.04
Average annual actual absorption (kg·hm-2·a-1)
21 to
25 years
73.76应吸收 Required absorption (kg·hm-2)352.4132.05217.53288.2979.92970.20
NTAPB (kg·hm-2)
实际吸收 Actual absorption(kg·hm-2)345.9430.03212.22279.4676.66944.31
Average annual actual absorption(kg·hm-2·a-1)

Table 3

The nutrient accumulation in the tree layers of the Cunninghamia lanceolata forest at different ages"

Stand age
Existing biomass (t·hm-2)
养分元素 Nutrient element (kg·hm-2)合计
Total (kg·hm-2)
氮 Nitrogen磷 Phosphorus钾 Potassium钙 Calcium镁 Magnesium
1-7年 1 to 7 years40.06170.27 (36.18)15.71 (3.34)106.86 (22.71)139.54 (29.65)38.20 (8.12)470.58 (100)
8-11年 8 to 11 years75.65336.92 (35.42)33.41 (3.51)218.89 (23.01)280.29 (29.46)81.80 (8.60)951.31 (100)
12-16年 12 to 16 years114.67480.69 (36.28)47.48 (3.55)313.36 (23.44)376.64 (28.29)113.85 (8.44)1??????? 332.02 (100)
17-20年 17 to 20 years161.09589.29 (37.14)54.76 (3.45)377.92 (23.88)437.63 (27.59)125.93 (7.94)1 586.53 (100)
21-25年 21 to 25 years209.84696.59 (37.88)63.43 (3.45)444.17 (24.16)498.51 (27.11)136.13 (7.40)1 838.83 (100)

Table 4

The average amount of nutrient returned by Cunninghamia lanceolata at different stand ages"

Stand age
Dead matter (t·hm-2·a-1)
养分元素 Nutrient element (kg·hm-2·a-1)合计
Total (kg·hm-2·a-1)
氮 Nitrogen磷 Phosphorus钾 Potassium钙 Calcium镁 Magnesium
1 to 7 years
枝 Twig0000000
叶 Needle0.4444.070.352.284.241.0011.94
合计 Total0.4444.070.352.284.241.0011.94
8 to 11 years
枝 Twig0.1750.930.130.851.010.413.33
叶 Needle1.55514.581.268.1716.093.7843.88
合计 Total1.73015.511.399.0217.104.1947.21
12 to 16 years
枝 Twig0.7003.580.483.283.601.5412.48
叶 Needle2.39821.461.8211.8222.955.6663.71
合计 Total3.09825.042.3015.1026.557.2076.19
17 to 20 years
枝 Twig1.7508.651.157.868.703.7430.10
叶 Needle3.15327.462.3014.9429.607.2281.52
合计 Total4.90336.113.4522.8038.3010.96111.62
21 to 25 years
枝 Twig2.0049.661.268.649.704.1533.41
叶 Needle2.69023.081.9112.4024.836.0068.22
合计 Total4.69432.743.1721.0434.5310.15101.63

Table 5

Nutrient cycle in different stand stages of Cunninghamia lanceolata forest"

Stand age
项目 Item养分元素 Nutrient element合计
氮 Nitrogen磷 Phosphorus钾 Potassium钙 Calcium镁 Magnesium
1 to
7 years
7年生现存量 7-year-old existing stock (kg·hm-2)170.2715.71106.86139.5438.20470.58
年吸收量 Annual absorption (kg·hm-2·a-1)29.202.6717.8524.386.5480.64
年归还量 Annual restitution (kg·hm-2·a-1)4.070.352.284.241.0011.94
利用系数 Utilization coefficient0.1710.1700.1670.2200.1710.171
循环系数 Cycling coefficient0.1390.1310.1270.1330.1530.148
周转时间 Turnover period (a)41.8344.8846.8743.0738.2039.41
8 to
11 years
11年生现存量 11-year-old existing stock (kg·hm-2)336.9233.41218.89280.2981.80951.31
年吸收量 Annual absorption (kg·hm-2·a-1)60.395.9537.7952.1915.50171.82
年归还量 Annual restitution (kg·hm-2·a-1)15.511.399.0217.104.1947.21
利用系数 Utilization coefficient0.1790.1780.1720.1860.1890.181
循环系数 Cycling coefficient0.2570.2340.2390.3280.2700.275
周转时间 Turnover period (a)21.9324.0424.4916.3819.2620.15
12 to
16 years
16年生现存量 16-year-old existing stock (kg·hm-2)480.6947.48313.36376.64113.851 332.02
年吸收量 Annual absorption (kg·hm-2·a-1)55.885.5338.2751.0714.67165.42
年归还量 Annual restitution (kg·hm-2·a-1)25.042.3015.1026.557.2076.19
利用系数 Utilization coefficient0.1160.1160.1220.1360.1290.124
循环系数 Cycling coefficient0.4480.4160.3950.5200.4910.461
周转时间 Turnover period (a)19.2020.6420.7714.1715.7917.48
17 to
20 years
20年生现存量 20-year-old existing stock (kg·hm-2)589.2954.76377.92437.63125.931 586.53
年吸收量 Annual absorption (kg·hm-2·a-1)71.646.1843.2855.9915.42192.51
年归还量 Annual restitution (kg·hm-2·a-1)36.113.4522.8038.3010.96111.62
利用系数 Utilization coefficient0.1140.1130.1150.1280.1220.121
循环系数 Cycling coefficient0.5040.5600.5270.6840.7110.580
周转时间 Turnover period (a)16.3215.8316.5811.4311.4814.21
21 to
25 years
25年生现存量 25-year-old existing stock (kg·hm-2)696.5963.43444.17498.51136.131 838.83
年吸收量 Annual absorption (kg·hm-2·a-1)69.196.0142.4455.8915.33188.86
年归还量 Annual restitution (kg·hm-2·a-1)32.743.1721.0434.5310.15101.63
利用系数 Utilization coefficient0.0990.0950.0960.1120.1130.103
循环系数 Cycling coefficient0.4730.5270.4960.6180.6620.538
周转时间 Turnover period (a)21.2820.7821.1114.4413.4118.09
[1] Aerts R, Chapin FS (1999). The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns.Advances in Ecological Research, 37, 1-67.
doi: 10.1016/S0065-2504(08)60016-1
[2] Bazilevich NI, Rodin LE (1966). The biological cycle of nitrogen and ash elements in plant communities of the tropical and subtropical zones.Forestry Abstracts, 27, 357-372.
[3] Bormann FH, Likens GE (1979). Pattern and Process in a Forest Ecosystem. Springer, New York. 253-259.
[4] Chen LZ, Lindley DK (1983). Nutrient cycling in Hampsfell bracken grassland ecosystem, England.Acta Botanica Sinica, 25, 67-74.
[陈灵芝, Lindley DK (1983). 英国Hampsfell的蕨菜草地生态系统的营养元素循环. 植物学报, 25, 67-74.]
[5] Ebrmayer E (1876).Die Qesamte Lehreter Woldstreumit Rucksichtauf die Chemische Staticdes Woldbaues. Julius Spriuger Press,Berlin. 116.
[6] Feng ZW, Chen CY, Wang KP, Zhang JW, Zeng SY, Zhao JZ, Deng SJ (1985). Accumulation, distribution and cycling of nutrient elements in a subtropical Chinese fir stand. Acta Phytoecologicaet Geobotanica Sinica, 9, 245-256.
[冯宗炜, 陈楚莹, 王开平, 张家武, 曾士余, 赵吉录, 邓仕坚 (1985). 亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究. 植物生态学与地植物学丛刊, 9, 245-256.]
[7] He B, Qin WM, Wu HG, Liu YH, Qin L, Qin YH (2007). Biological cycling of nutrients in different ages classes ofAcacia mangium plantation. Acta Ecologica Sinica, 27, 5158-5167.
[何斌, 秦武明, 余浩光, 刘运华, 覃林, 覃永华 (2007). 不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环. 生态学报, 27, 5158-5167.]
[8] Ji WJ, Cheng XQ, Han HR, Kang FF, Yang J, Zhu J, Zhao J, Bai YC, Ma JY (2016). The biomass and nutrient distribution in Larix principis-ruppechtii Magyr plantations at different forest age. Journal of Applied and Environmental Biology, 22, 277-284.
[纪文婧, 程小琴, 韩海荣, 康峰峰, 杨杰, 朱江, 赵敬, 白英辰, 马俊勇 (2016). 不同林龄华北落叶松人工林生物量及营养元素分布特征. 应用与环境生物学报, 22, 277-284.]
[9] Kost JA, Boerner RE (1985). Foliar nutrient dynamics and nutrient use efficiency in California. Ecology, 66, 602-606.
doi: 10.1007/BF00379355 pmid: 28310804
[10] Lin DX, Liu KH, Luo SF (2002). Dynamics and cycling analysis of nutrient elements inEucalyptus urophylla. Journal of Applied and Environmental Biology, 8, 148-153.
doi: 10.3321/j.issn:1006-687X.2002.02.007
[林德喜, 刘开汉, 罗水发 (2002). 尾叶桉营养元素动态和循环分析. 应用与环境生物学报, 2, 148-153.]
doi: 10.3321/j.issn:1006-687X.2002.02.007
[11] Liu AQ, Fan SH, Lin KM, Ma XQ, Sheng WT (2005). Comparison on nutrient cycling in different generation plantations of Chinese fir. Plant Nutrition and Fertilizer Science, 11, 273-278.
doi: 10.3321/j.issn:1008-505X.2005.02.024
[刘爱琴, 范少辉, 林开敏, 马祥庆, 盛炜彤 (2005). 不同栽植代数杉木林养分循环的比较研究. 植物营养与肥料学报, 11, 273-278.]
doi: 10.3321/j.issn:1008-505X.2005.02.024
[12] Lu RK (2002). Soil Agricultural Chemical Analysis Methods. China Agricultural Science and Technology Press, Beijing. 128-133.
[鲁如坤 (2002). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 128-133.]
[13] Ma XQ, Liu AQ, Ma Z, Fan SH (2000). A comparative study on nutrient accumulation and distribution of different generations of Chinese fir plantations. Chinese Journal of Applied Ecology, 11, 501-506.
doi: 10.1007/s11769-000-0054-1
[马祥庆, 刘爱琴, 马壮, 范少辉 (2000). 不同代数杉木林养分积累和分布的比较研究. 应用生态学报, 11, 501-506.]
doi: 10.1007/s11769-000-0054-1
[14] Miller HG (1984). Dynamics of Nutrient Cycling in Plantation Ecosystems. In: Bowen GD, Nambiar EKS eds. Nutrition of Plantation Forests. Academic Press, London. 53-78.
[15] Pan WC, Tia DL, Lei ZX, Kang WX (1983). Studies on the nutrient cycling in the Chinese fir plantations. II. Content accumulation rate biological cycling of nutrient elements in the fast-growing in the Chinese fir forest in the hill regions.Journal of Central South Forestry University, 3, 1-17.
[潘维俦, 田大伦, 雷志星, 康文星 (1983). 杉木人工林养分循环的研究(二): 丘陵区速生杉木林的养分含量、积累速率和生物循环. 中南林学院学报, 3, 1-17.]
[16] Schlesinger WH, Delucia EH, Billings WD (1989). Nutrient- use efficiency of woody plants on contrasting soils in the western Great Basin, Nevada.Ecology, 56, 105-113.
doi: 10.2307/1938417
[17] Shen SM, Yu WT, Zhang L, Hian HZ (1993). Internal and external nutrient cyclings of Populus tree. II. Transferring and cycling of nutrients in and out of the tree before and after leaf fallen. Chinese Journal of Applied Ecology, 4, 27-31.
[沈善敏, 宇万太, 张璐, 廉鸿志 (1993). 杨树主要营养元素内循环及外循环研究. 2. 落叶前后养分在植株体内外的迁移和循环. 应用生态学报, 4, 27-31.]
[18] Tian DL, Pan HH, Kang WX, Fang HB (2001). Studies of nutrient dynamics of the second generation of china fir plantation.Journal of Central South Forestry University, 18, 11-16.
doi: 10.3969/j.issn.1673-923X.2001.03.002
[田大伦, 盘宏华, 康文星, 方海波 (2001). 第二代杉木林养分动态研究. 中南林学院学报, 18, 11-16.]
doi: 10.3969/j.issn.1673-923X.2001.03.002
[19] Tong ZL, Chen QB, Wang YX, Xiong HQ, Wu JX (2014). Accumulation and distribution characteristics of nutrients in Pinus yunnanensis forests with different ages. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 42, 100-106, 114.
doi: 10.13207/j.cnki.jnwafu.2014.06.006
[佟志龙, 陈奇伯, 王艳霞, 熊好琴, 吴晋霞 (2014). 不同林龄云南松林营养元素积累与分配特征研究. 西北农林科技大学学报(自然科学版), 42, 100-106, 114.]
doi: 10.13207/j.cnki.jnwafu.2014.06.006
[20] Tsutuumi T, Kawahara T, Shidei T (1968). The circulation of nutrients in forest ecosystems (1): On the amount of nutrients contained in the above-ground parts of single tree of stand.Japanese Forestry Society, 3, 66-74.
[21] Wen ZM, Liang HW, Li Y (1991). Studies on the biocycling of nutrient elements of tree layer of Cunninghamia lanceolata mature plantations. Acta Phytoecologicaet Geobotanca Sinica, 15, 36-45.
[温肇穆, 梁宏温, 黎跃 (1991). 杉木成熟林乔木层营养元素生物循环的研究. 植物生态学与地植物学学报, 15, 36-45.]
[22] Xiang WH, Tian DL (2002). Nutrient cyclingPinus massoniana stands of different age classes. Acta Phytoecologica Sinica, 26, 89-95.
[项文化, 田大伦 (2002). 不同年龄阶段马尾松人工林养分循环的研究. 植物生态学报, 26, 89-95.]
[23] Xiang WH, Tian DL, Yan WD, Kang WX, Fang HB (2002). Nutrient elements distribution and cycling in the second rotation Chinese Fir plantation at fast-growing stage.Scientia Silvae Sinicae, 38(2), 2-8.
doi: 10.11707/j.1001-7488.20020202
[项文化, 田大伦, 闫文德, 康文星, 方海波 (2002). 第2代杉木林速生阶段营养元素的空间分布特征和生物循环. 林业科学, 38(2), 2-8.]
doi: 10.11707/j.1001-7488.20020202
[24] Xiao XC, Li ZH, Tang ZJ, Zeng Q, Wang HF (2013). Effects of stand density on nutrient cycling rate and use efficiency ofPinus elliottii plantation. Chinese Journal of Ecology, 32, 2871-2880.
[肖兴翠, 李志辉, 唐作钧, 曾琴, 王海风 (2013). 林分密度对湿地松人工林养分循环速率和利用效率的影响. 生态学杂志, 32, 2871-2880.]
[25] Xu FY, Wang LH, Li PZ, Xu SM, Zhang SY (1997). Internal and external nutrient transfers in foliage of some north deciduous trees. I. Changes of nutrient concentrations and contents.Chinese Journal of Applied Ecology, 8, 1-6.
[徐福余, 王力华, 李培芝, 许思明, 张颂云 (1997). 若干北方落叶树木叶片养分的内外迁移. I. 浓度和含量的变化. 应用生态学报, 8, 1-6.]
[26] Yu SQ (1994). Studies on the nutritive cycling of plantation system of Cupressaceae: (2). The nutrient accumulation distribution and utilization in arbor layer.Journal of Sichuan Agricultural University, 12, 505-510.
[余树全 (1994). 柏木人工林生态系统养分循环研究(2). 乔木层营养元素积累、分配和利用. 四川农业大学学报, 12, 505-510.]
[27] Yu YF, He TG, Peng SX, Song TQ, Zeng FP, Du H, Han C, Li SS (2015). Dynamics of nutrient elements in different types of forests in depressions between karst hills.Acta Ecologica Sinica, 35, 7531-7542.
doi: 10.5846/stxb201403100412
[俞月凤, 何铁光, 彭晚霞, 宋同清, 曾馥平, 杜虎, 韩畅, 李莎莎 (2015). 喀斯特峰丛洼地不同类型森林养分循环特征. 生态学报, 35, 7531-7542.]
doi: 10.5846/stxb201403100412
[28] Zhang WR, Xu BT (1986).Research Method of Forest Soil Location. China Forestry Publishing House, Beijing. 20-36.
[张万儒, 许本彤 (1986).森林土壤定位研究方法. 中国林业出版社, 北京. 30-36.]
[29] Zhang XB, Shangguan ZP (2006). Nutrient distributions and bio-cycle patterns in both natural and artificial Pinus tabulaeformis forests in Hilly Loess Regions. Acta Ecologica Sinica, 26, 373-382.
[张希彪, 上官周平 (2006). 黄土丘陵区油松人工林与天然林养分分布和生物循环比较. 生态学报, 26, 373-382.]
[30] Zhao CM, Cao JH, Jiang JS, Li XB, Xie GS (2008). Nutrient accumulation, distribution and biological cycling in Hevea brasiliensis(Willd. ex A. Juss.) Muell. Arg. plantation ecosystem. Chinese Agricultural Science Bulletin, 24, 467-470.
[赵春梅, 曹建华, 蒋菊生, 李晓波, 谢贵水 (2008). 橡胶人工林生态系统养分积累、分配与生物循环. 中国农学通报, 24, 467-470.]
[31] Zhuang ZD, Chen QB, Zhao YY, Xiong XQ (2016). Distribution pattern of nutrient elements in evergreen broad- leaved forest in Mopanshan, Middle Yunnan Plateau.Journal of Northeast Forestry University, 44(3), 26-32.
[庄志东, 陈奇伯, 赵洋毅, 熊好琴 (2016). 滇中高原磨盘山常绿阔叶林营养元素分配格局. 东北林业大学学报, 44(3), 26-32.]
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[4] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[5] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[6] XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees [J]. Chin J Plan Ecolo, 2018, 42(9): 885-905.
[7] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. Distribution and habitat suitability assessment of the gaur Bos gaurus in China [J]. Biodiv Sci, 2018, 26(9): 951-961.
[8] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[9] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[10] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[11] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[12] CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer [J]. Chin J Plant Ecol, 2018, 42(11): 1103-1112.
[13] Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China [J]. Chin J Plan Ecolo, 2017, 41(8): 840-849.
[14] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[15] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .