Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (1): 56-69.doi: 10.17521/cjpe.2019.0230

• Research Articles • Previous Articles     Next Articles

Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China

JING Hong-Xia1,SUN Ning-Xiao2,Muhammad UMAIR2,LIU Chun-Jiang2,DU Hong-Mei1,*()   

  1. 1School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
    2School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-09-02 Revised:2020-01-08 Online:2020-01-19 Published:2020-01-20
  • Contact: DU Hong-Mei E-mail:hmdu@sjtu.edu.cn
  • Supported by:
    National Key R&D Programe of China(2016YFC0502501)

Abstract:

Aims Drought is a limiting factor for plant growth in southern karst areas. Climate change may affect the amount and distribution pattern of precipitation in these areas. It is important to understand the stoichiometric characteristics of soil and plants and how they respond to increasing precipitation in karst areas.
Methods In Jianshui karst areas in southern Yunnan, a water addition experiment was conducted since April 2017 and the concentrations of carbon (C), hydrogen (H), nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu) in the soils and leaves of two dominant shrubs (Bauhinia brachycarpa and Carissa spinarum) were measured in the dry season (April) and rainy season (August) in 2018.
Important findings Water addition affected the content of C, N and Na in the soil. Compared with the dry season, the concentrations of Na and S in the soil significantly decreased in the rainy season. The remaining soil elements did not show any significant differences between treatments and seasons. With the increase of soil moisture content, the concentrations of K decreased while Ca in both plant species increased. These results also indicated that soil moisture changes could significantly affect plant ecological traits. With soil moisture changes, the stabilities of leaf elements were related to their contents. The closer the leaf element contents are to the corresponding maximum or minimum values, the smaller are the coefficients of variation. And the variation coefficients of P, S and Mg with the concentrations close to 1 mg·g-1were the highest. Under the changes of soil moisture conditions, the stability of C, N, P and other major elements in C. spinarum was significantly higher than that B. brachycarpa. Changes in soil water content, which was caused by both rainfall changes and water addition, had different effects on different the contents of different elements in both soil and plants. These results may shed light on the restoration of soil and plants in karst regions.

Key words: karst landform, water addition, stoichiometry, leaf, shrub, soil

Table 1

Soil variables under different water treatments and in different months in degraded karst areas in Southern Yunnan of China (mean ± SE)"

指标
Index
4月 April 8月 August Pr
CK T1 T2 T3 CK T1 T2 T3 f1 f2 f1 × f2
pH 6.25 ± 0.07 6.38 ± 0.13 6.26 ± 0.07 6.32 ± 0.12 6.13 ± 0.12 6.27 ± 0.11 6.23 ± 0.06 6.31 ± 0.06
VWC (%) 3.11 ± 0.39 5.79 ± 0.40 8.09 ± 0.21 6.59 ± 0.72 10.33 ± 0.19 19.72 ± 0.25 26.81 ± 0.32 26.19 ± 0.32
Temperature (℃) 18.96 ± 0.17 18.64 ± 0.16 19.49 ± 0.19 18.82 ± 0.15 21.91 ± 0.07 21.89 ± 0.07 22.11 ± 0.08 22.15 ± 0.07
C (mg·g-1) 86.76 ± 6.03 98.75 ± 2.47 114.86 ± 6.47 98.85 ± 5.24 99.04 ± 4.31 89.68 ± 2.88 101.40 ± 4.73 113.68 ± 8.00 0.01 0.76 0.02
H (mg·g-1) 24.32 ± 0.32 24.28 ± 0.88 24.52 ± 0.66 23.94 ± 1.30 25.56 ± 0.46 23.60 ± 0.51 24.98 ± 0.44 25.90 ± 0.86 0.50 0.17 0.34
N (mg·g-1) 7.52 ± 0.18 7.38 ± 0.16 8.60 ± 0.37 9.60 ± 0.41 7.66 ± 0.36 7.15 ± 0.10 7.96 ± 0.35 8.98 ± 0.31 0.00 0.12 0.52
S (mg·g-1) 2.62 ± 0.15 2.51 ± 0.14 2.55 ± 0.15 2.37 ± 0.09 2.17 ± 0.08 2.09 ± 0.06 2.20 ± 0.07 2.01 ± 0.19 0.35 0.00 0.98
P (mg·g-1) 0.89 ± 0.06 0.94 ± 0.03 0.97 ± 0.02 1.02 ± 0.06 0.91 ± 0.06 0.91 ± 0.04 0.97 ± 0.02 0.92 ± 0.07 0.33 0.48 0.65
Fe (mg·g-1) 58.82 ± 3.31 58.59 ± 1.67 61.63 ± 2.85 58.97 ± 3.49 55.56 ± 3.40 62.35 ± 3.00 61.25 ± 2.44 56.77 ± 0.85 0.27 0.60 0.81
Al (mg·g-1) 54.76 ± 2.62 54.05 ± 1.85 53.40 ± 3.25 54.25 ± 2.23 55.78 ± 0.88 53.54 ± 2.50 53.36 ± 2.18 51.18 ± 1.95 0.70 0.58 0.82
K (mg·g-1) 6.07 ± 0.15 6.87 ± 0.38 6.42 ± 0.36 7.03 ± 0.69 7.15 ± 0.50 6.60 ± 0.34 6.38 ± 0.40 5.99 ± 0.70 0.91 0.84 0.18
Ca (mg·g-1) 5.84 ± 0.62 7.83 ± 0.43 6.87 ± 0.66 6.02 ± 0.67 6.01 ± 0.68 5.28 ± 0.46 6.28 ± 0.20 7.36 ± 0.90 0.59 0.35 0.02
Na (mg·g-1) 2.62 ± 0.05 2.18 ± 0.08 2.19 ± 0.05 2.02 ± 0.09 1.95 ± 0.07 1.89 ± 0.08 1.90 ± 0.03 1.59 ± 0.08 0.00 0.00 0.03
Mn (mg·g-1) 1.52 ± 0.09 1.63 ± 0.01 1.64 ± 0.07 1.68 ± 0.10 1.55 ± 0.12 1.52 ± 0.12 1.61 ± 0.04 1.56 ± 0.10 0.71 0.37 0.78
Mg (mg·g-1) 1.01 ± 0.04 1.56 ± 0.13 1.24 ± 0.08 1.36 ± 0.14 1.24 ± 0.12 1.21 ± 0.08 1.30 ± 0.14 1.39 ± 0.21 0.16 0.92 0.16
Zn (mg·g-1) 0.35 ± 0.03 0.39 ± 0.04 0.43 ± 0.03 0.46 ± 0.03 0.42 ± 0.04 0.42 ± 0.02 0.44 ± 0.03 0.43 ± 0.05 0.34 0.36 0.63
Cu (mg·g-1) 0.108 ± 0.002 0.111 ± 0.004 0.105 ± 0.004 0.105 ± 0.002 0.107 ± 0.003 0.107 ± 0.003 0.106 ± 0.004 0.095 ± 0.004 0.09 0.20 0.50

Fig. 1

Relationship between coefficients of variation and log2FC of soil element concentrations in degraded karst areas in Southern Yunnan of China. FC = “mean value of soil elemental concentration in the plot”/“mean value of national soil elemental concentration”, if log2FC > 0, it means that the elemental concentration in the plot is higher than the national average."

Table 2

Correlation indices between element concentrations in leaves of the two plant species in degraded karst areas in Southern Yunnan of China"

物种
Species
Pearson相关系数 Pearson correlation coefficient
N-P C-H K-Ca Mn-Ca C-K P-K Ca-Fe C-P N-K C-N
鞍叶羊蹄甲
Bauhinia brachycarpa
0.646** 0.638** -0.747** 0.508** 0.477** 0.689** 0.369* 0.417** 0.667** 0.368*
假虎刺 Carissa spinarum 0.408** 0.467** -0.463** 0.627** -0.355* 0.374* -0.640** -0.074 -0.179 0.024

Table 3

Leat element contentrations and stoichiometric ratios in Bauhinia brachycarpa under different water treatments nd in different months (mean ± SE)"

Table 4

Leat element contentrations and stoichiometric ratios in Carissa spinarum under different water treatments nd in different months (mean ± SE)"

Fig. 2

Relationship between coef?cients of variation and mean values of leaf element concentrations in degraded karst areas in Southern Yunnan of China. A1, A2, Bauhinia brachycarp. B1, B2, Carissa spinarum."

Fig. 3

Standardization regression slops of the simple linear regressions between leaf elemental concentration (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China. A, Leaf elements. B, Stoichiometric ratio. *, p < 0.05; **, p < 0.01."

Fig. 4

Relationships between the leaf elemental concentrations (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China."

Fig. 5

Relationships between leaf elemental concentrations of Bauhinia brachycarpa and soil volumetric water content in degraded karst areas in Southern Yunnan of China."

[1] Bai YB, Li J, Zhang BL, Xin SG, Bu N, Ma LJ, Li XM (2013). Research advance on effect of drought stress on mineral elements of plant. Biotechnology Bulletin, (3), 15-18.
[ 白艳波, 李娇, 张宝龙, 辛世刚, 卜宁, 马莲菊, 李雪梅 (2013). 干旱胁迫对植物矿质元素影响的研究进展. 生物技术通报, (3), 15-18.]
[2] Cheng YF, Wang JX, Xu LY, Wang JW, Zhang L (2015). Surface soil moisture variation in the degradation of primary red soil in karst hills of the Yunnan Plateau. Jiangsu Agricultural Sciences, 43(11), 433-437.
[ 程燕芳, 王嘉学, 许路艳, 王家文, 张磊 (2015). 云南高原喀斯特山原红壤退化中的表层土壤水分变异. 江苏农业科学, 43(11), 433-437.]
[3] Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012). Timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences of the United States of America, 109, 3401-3405.
[4] Du MY, Fan SH, Liu GL, Feng HY, Guo BH, Tang XL (2016). Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China. Chinese Journal of Plant Ecology, 40, 760-774.
[ 杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿 (2016). 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 40, 760-774.]
[5] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
[6] Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
[7] Hu ZL, Pan GX, Li LQ, Du YX, Wang XZ (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica, 29, 4187-4195.
[ 胡忠良, 潘根兴, 李恋卿, 杜有新, 王新洲 (2009). 贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性. 生态学报, 29, 4187-4195.]
[8] Huang J (2009). Studies on Characteristics of Degradation of Vegetation and Soil from Stone-forest Limestone Region in Yunnan Province. Master degree dissertation, Nanjing Forestry University, Nanjing. 25-32.
[ 黄金 (2009). 云南石林喀斯特山地植被和土壤退化特征的研究. 硕士学位论文, 南京林业大学, 南京. 25-32.]
[9] Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373.
[ 黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.]
[10] Huang LH (2018). Discussion the result calculation of testing items in soil analysis. Analytical Instrumentation, (4), 211-214.
[ 黄亮辉 (2018). 浅谈土壤检测项目结果计算. 分析仪器, (4), 211-214.]
[11] Jiang ZC, Lian YQ, Qin XQ (2014). Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 132, 1-12.
[12] Jiménez MA, Jaksic FM, Armesto JJ, Gaxiola A, Meserve PL, Kelt DA, Gutiérrez JR (2011). Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecology Letters, 14, 1227-1235.
[13] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
[14] Li K, Dong L, Chen Q, Chen DS (2017). Communities characteristics of vegetation ecological restoration in rocky desertification area in Yunnan. Chinese Landscape Architecture, 33, 41-46.
[ 李坤, 董丽, 陈强, 陈德生 (2017). 云南石漠化地区植被生态修复群落特征研究. 中国园林, 33, 41-46.]
[15] Li RL, Geng S (2013). Impacts of climate change on agriculture and adaptive strategies in China. Journal of Integrative Agriculture, 12, 1402-1408.
[16] Li SJ, Gou W, Wang H, Wu GQ, Su PX (2019). Characteristics of C, N, P, and their response to soil water and salt in leaves of Lycium ruthenicum in the lower reaches of the Heihe River. Acta Ecologica Sinica, 39, 7189-7196.
[ 李善家, 苟伟, 王辉, 伍国强, 苏培玺 (2019). 黑河下游黑果枸杞叶片C、N、P特征及对土壤水盐的响应. 生态学报, 39, 7189-7196.]
[17] Li YB, Wang SJ, Xiong KN (2003). On the research for eco-hydrological effects in southwest China karst mountain area. Carsologica Sinica, 22, 24-27.
[ 李阳兵, 王世杰, 熊康宁 (2003). 浅议西南岩溶山地的水文生态效应研究. 中国岩溶, 22, 24-27.]
[18] Liu CC, Liu YG, Guo K, Wang SJ, Yang Y (2014). Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south- western China. Annals of Botany, 113, 873-885.
[19] Liu L, Yang F, Liu ZG, Huang DG, Huang JM, Fang HY, Yang GH (2008). Determination of heavy metals in soils and plants with microwave digestion and ICP-AES. Environmental Chemistry, 27, 511-514.
[ 刘雷, 杨帆, 刘足根, 黄冬根, 黄精明, 方红亚, 杨国华 (2008). 微波消解ICP-AES法测定土壤及植物中的重金属. 环境化学, 27, 511-514.]
[20] Lu Y (2007). Investigation and Research of Remote Sensing to the Desertification in Lujiang Catchment, Yunnan Province. Master degree dissertation, China University of Geosciences, Beijing. 41-47.
[ 路遥 (2007). 云南泸江流域土地石漠化遥感调查与研究. 硕士学位论文, 中国地质大学, 北京. 41-47.]
[21] Lyu X, Tao Z, Gao Q, Peng H, Zhou M (2018). Chemical weathering and riverine carbonate system driven by human activities in a subtropical karst basin, South China. Water, 10, 1524.
[22] Ma WT, Fan WG (2007). Effect of drought stress on mineral nutrient contents in leaves of seedling plant of C. tangerina Hort., C. sinensis Osbeck and C. grandis Osbeck. Southwest China Journal of Agricultural Sciences, 20, 630-633.
[ 马文涛, 樊卫国 (2007). 干旱胁迫对实生红橘、甜橙和柚叶中营养元素含量的影响. 西南农业学报, 20, 630-633.]
[23] Maathuis FJ (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12, 250-258.
[24] Mahouachi J, Socorro AR, Talon M (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: Growth, photosynthesis and mineral nutrient imbalance. Plant and Soil, 281, 137-146.
[25] Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London.
[26] Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
[27] Pei J, Wang L, Wang XY, Niu Z, Kelly M, Song XP, Huang N, Geng J, Tian HF, Yu Y, Xu SG, Wang L, Ying Q, Cao JH (2019). Time series of landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest China from 1988 to 2016. Remote Sensing, 11, 2044.
[28] Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
[29] Planchet E, Rannou O, Ricoult C, Boutet-Mercey S, Maia- Grondard A, Limami AM (2011). Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 62, 605-615.
[30] Pi FJ, Shu LX, Yu LF, Yan LB, Zhou C, Wu ZH, Yuan CJ (2017). Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in Karst Region of Central Guizhou. Ecology and Environmental Sciences, 26, 628-634.
[ 皮发剑, 舒利贤, 喻理飞, 严令斌, 周晨, 吴正花, 袁丛军 (2017). 黔中喀斯特10种优势树种根茎叶化学计量特征及其关联性. 生态环境学报, 26, 628-634.]
[31] Qin HL, Zhu JS, Luo YJ, Zhang JL, Cao SX, Zhang H (2018). Research progress on cyclic process of soil C and N under dry-wet alternation. Hubei Agricultural Sciences, 57, 11-14.
[ 秦海兰, 朱金山, 罗友进, 张家乐, 曹诗萱, 张慧 (2018). 干湿交替条件下的土壤C、N循环过程研究进展. 湖北农业科学, 57, 11-14.]
[32] Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186.
[33] Sardans J, Peñuelas J, Prieto P, Estiarte M (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil, 306, 261-271.
[34] Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47.
[35] Sha ZM, Yuan J, Zhao Z, Yue YB, Yao J, Cao LK (2016). Ionome of rice seed response to rice cultivation patterns. Chinese Journal of Eco-Agriculture, 24, 600-607.
[ 沙之敏, 袁婧, 赵峥, 岳玉波, 姚健, 曹林奎 (2016). 水稻种植模式对水稻籽粒离子组的影响. 中国生态农业学报, 24, 600-607.]
[36] Shen HG (2010). Influence of soil microelement on plant. Forestry Science and Technology Information, 42, 12-14.
[ 沈惠国 (2010). 土壤微量元素对植物的影响. 林业科技情报, 42, 12-14.]
[37] Tian HQ, Chen G, Zhang CS, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
[38] Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9, 9-17.
doi: 10.1890/100047
[39] Wang GB, Yuan AQ, Cao FL, Jing M, Pan JX (2005). The effects of water stress on nutrient element contents in root, stem and leaf of Ginkgo. Journal of Nanjing Forestry University (Natural Science Edition), 29(6), 15-18.
[ 汪贵斌, 袁安全, 曹福亮, 景茂, 潘静霞 (2005). 土壤水分胁迫对银杏无机营养元素含量的影响. 南京林业大学学报(自然科学版), 29(6), 15-18.]
[40] Wang J, Meng JJ (2007). Characteristics and tendencies of climate change in the southwestern karst region of China in the recent 45 years. Acta Scientiarum Naturalium Universitatis Pekinensis, 43, 223-229.
[ 王钧, 蒙吉军 (2007). 西南喀斯特地区近45年来气候变化特征及趋势. 北京大学学报(自然科学版), 43, 223-229.]
[41] Wang K, Shen C, Sun B, Wang XN, Wei D, Lyu LY (2018). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. Chinese Journal of Applied Ecology, 29, 2286-2294.
[ 王凯, 沈潮, 孙冰, 王潇楠, 魏东, 吕林有 (2018). 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 29, 2286-2294.]
[42] Wang L, Yu YH, Xing RR, Qin SY (2018). Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area. Acta Ecologica Sinica, 38, 5393-5403.
[ 王璐, 喻阳华, 邢容容, 秦仕忆 (2018). 喀斯特高寒干旱区不同经济树种的碳氮磷钾生态化学计量特征. 生态学报, 38, 5393-5403.]
[43] Wang LC, Zeng CF, Meng HH, Chang WN (2016). Water geochemistry and dissolution rates of the karst-dominated Houzhai River basin, China. Toxicological & Environmental Chemistry, 98, 648-657.
[44] Wei FS, Chen JS, Wu YY, Zheng CJ (1991). Study on the background contents on 61 elements of soils in China. Acta Scientiae Circumstantiae, 12, 12-19, 94.
[ 魏复盛, 陈静生, 吴燕玉, 郑春江 (1991). 中国土壤环境背景值研究. 环境科学, 12, 12-19, 94.]
[45] Yang H, Zhu TB, Wang XH, Pu JB, Li JH, Zhang T, Cao JH (2018). Soil element contents of typical small watershed in the plateau area of karst fault basin, Yunnan. Ecology and Environmental Sciences, 27, 859-865.
[ 杨慧, 朱同彬, 王修华, 蒲俊兵, 李建鸿, 张陶, 曹建华 (2018). 云南断陷盆地高原面典型小流域土壤元素含量特征. 生态环境学报, 27, 859-865.]
[46] Yang YX, Liu DL, Han JG, Zhao GQ, Han J, Wang XS (2010). Effects of ABA on the content of mineral element and proline of two alfalfa varieties under NaCl stress condition. Pratacultural Science, 27, 57-61.
[ 杨跃霞, 刘大林, 韩建国, 赵国琦, 韩娟, 王小山 (2010). 外源ABA对NaCl胁迫下紫花苜蓿矿质元素和脯氨酸含量的影响. 草业科学, 27, 57-61.]
[47] Yu ZD (2003). The origin and evolution of the karst landscape. Yunnan Geology, 22, 1-15.
[48] Yue YM, Wang KL, Zhang B, Jiao QJ, Liu B, Zhang MY (2012). Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment. Procedia Environmental Sciences, 13, 847-853.
doi: 10.1016/j.proenv.2012.01.078
[49] Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
[50] Zhang MH, Li GW, Huang W, Bi T, Chen GY, Tang ZC, Su WA, Sun WN (2010). Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics, 10, 3117-3129.
doi: 10.1002/pmic.200900637
[51] Zhang W, Liu CQ, Liu TZ, Li XD, Zhang LL (2010). Sulfur species and isotopic compositions in limestone soils on slopes of karst regions. Geochimica, 39, 251-257.
[ 张伟, 刘丛强, 刘涛泽, 李晓东, 张丽丽 (2010). 喀斯特坡地石灰土硫形态分布及其同位素组成特征. 地球化学, 39, 251-257.]
[52] Zheng YC, Wang SJ (2002). Geological cause of calcareous soil erosion and land rocky desertification in karst area, Guizhou province. Resources and Environment in the Yangtze Basin, 11, 461-465.
[ 郑永春, 王世杰 (2002). 贵州山区石灰土侵蚀及石漠化的地质原因分析. 长江流域资源与环境, 11, 461-465.]
[53] Zhou YC (1997). A study on the part plants’ main nutrient elements content of Guizhou Karst region. Journal of Guizhou Agricultural College, 16(1), 11-16.
[ 周运超 (1997). 贵州喀斯特植被主要营养元素含量分析. 贵州农学院学报, 16(1), 11-16.]
[54] Zhu LJ, Li JY (2004). Weathering and Carbonate Formation of Carbonate Rock and Its Environmental Effects. Geological Publishing House, Beijing. 7-10.
[ 朱立军, 李景阳 (2004). 碳酸盐岩风化成土作用及其环境效应. 地质出版社, 北京. 7-10.]
[1] Wei Fu Hui Wu Aihua Zhao Zhipeng Hao Bao-Dong CHEN. The ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[4] Ying Chen. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[5] Xiao-Juan FENG YiYun Wang Ting Liu Juan JIA Guo-Hua DAI Tian MA Zong-Guang LIU. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[6] Mengke Jia,Yili Guo,Dongxing Li,Bin Wang,Wusheng Xiang,Ailong Wang,Shengyuan Liu,Tao Ding,Fuzhao Huang,Shujun Wen,Shuhua Lu,Xiankun Li. Spatio-temporal dynamics of leaf litter in a karst seasonal rainforest in southwest Guangxi [J]. Biodiv Sci, 2020, 28(4): 455-462.
[7] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[8] . Geographical provenance variation of Caryopteris mongholica leaf anatomical structure and its significance in response to environmental changes [J]. Chin J Plant Ecol, 2020, 44(3): 0-0.
[9] Cheng-Fang LIN Hao-Wei SONG Yu-Sheng YANG. Response of leaf litter decomposition of different tree species to nitrogen addition in mid - subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 0-0.
[10] Jianing Zhao, Yun Liang, Ying Liu, Yujue Wang, Qianru Yang, Chunwang Xiao. Patterns and Influence Factors of Fine Root Turnover in Forest Ecosystems [J]. Chin Bull Bot, 2020, 55(3): 308-317.
[11] HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79.
[12] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
[13] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[14] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[15] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .