植物生态学报 ›› 2007, Vol. 31 ›› Issue (1): 66-74.DOI: 10.17521/cjpe.2007.0009
收稿日期:
2005-09-09
接受日期:
2005-12-13
出版日期:
2007-09-09
发布日期:
2007-01-30
作者简介:
E-mail: jiaxiaohonggs@163.com
基金资助:
JIA Xiao-Hong(), LI Xin-Rong, LI Yuan-Shou
Received:
2005-09-09
Accepted:
2005-12-13
Online:
2007-09-09
Published:
2007-01-30
摘要:
测定了干旱沙区不同年限植被恢复区土壤0~5(包括结皮层)、5~10和10~20 cm颗粒组成分布、土壤有机碳(Soil organic carbon, SOC)和全氮含量,并分析了土壤颗粒组成分布中沙粒和粘粉粒含量变化与土壤SOC和氮含量间的关系,探讨植被恢复过程中SOC和氮变化规律。研究表明,干旱沙区植被恢复过程中,SOC和全氮含量存在明显的固存效应,这种效应不仅表现在植被恢复的时间上,也表现在土壤垂直分布上。植被恢复区SOC和氮含量随恢复时间的延长呈增加趋势,在垂直方向上呈降低趋势。土壤极细沙(0.1~0.05 mm)和粘粉粒含量(<0.05 mm)的时间和空间变异与SOC和氮有着相似的趋势。而沙粒含量(0.5~0.1 mm)则随植被恢复时间增加和土层深度的增加呈降低趋势。土壤中极细沙粒(0.1~0.05 mm)和粘粉粒含量(<0.05 mm)分别与SOC和氮含量有显著正相关关系(p<0.01),而沙粒含量(0.5~0.1 mm)与SOC和氮含量呈显著负相关(p<0.01)。从植被恢复或者荒漠化逆转角度阐明了干旱沙区土地利用的变化导致的土壤保护性碳组分的增加是土壤碳储量汇功能增加的体现。在研究区域,有机碳和全氮因土壤粘粉粒和极细沙而积累的定量关系可以用线性方程很好地预测,从而为更好地估算荒漠化逆转过程中不同阶段碳汇量提供了依据。而植被恢复中土壤SOC和氮与土壤颗粒间的结论加深了荒漠化逆转过程中土地利用方式的改变对气候变化响应的陆地生态系统碳循环过程与机理的理解,明确了我国广泛在干旱沙区实施区域治理对全球大气CO2汇的贡献。植被恢复过程中,表征土壤肥力特征的SOC和氮在时间和空间上的变异对植被演变的影响,以及土壤物理稳定性的增强对土壤抗风蚀能力的贡献。从另一个方面阐述了植被恢复过程中土壤和植被间的这种相互关系及其对生态环境改善的贡献,为探讨干旱沙区荒漠化逆转过程中植物种的选育和合理评价生态环境提供了参考。
贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复中土壤碳氮变化规律. 植物生态学报, 2007, 31(1): 66-74. DOI: 10.17521/cjpe.2007.0009
JIA Xiao-Hong, LI Xin-Rong, LI Yuan-Shou. SOIL ORGANIC CARBON AND NITROGEN DYNAMICS DURING THE RE-VEGETATION PROCESS IN THE ARID DESERT REGION. Chinese Journal of Plant Ecology, 2007, 31(1): 66-74. DOI: 10.17521/cjpe.2007.0009
恢复年代 Age of re- vegetation | 植被总盖度 Total vegetation coverage (%) | 优势种 Dominant species | 土壤结皮 Soil crust (cm) | 土壤含水量 Soil moisture (%) | 土壤微生物 Soil microbe amount (103·g-1) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1956 | 25.19 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides) | 2.1 | 1.162 | 32 253.49 | ||||||||||||||||||||||||
1964 | 27.67 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、柠条(Caragana korshinskii) | 1.0 | 1.170 | 63 794.88 | ||||||||||||||||||||||||
1981 | 36.37 | 沙米(Agriophyllum squarrosum)、油蒿(Artemisia ordosica) | 0.4 | 1.516 | 2 073.10 | ||||||||||||||||||||||||
1987 | 30.00 | 油蒿(Artemisia ordosica)、沙木蓼(Atraphaxis bracteata) | 0.3 | 2.027 | |||||||||||||||||||||||||
1990 | 40.00 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides) | 0.2 | 2.560 | |||||||||||||||||||||||||
2000 | 雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides)、沙米(Agriophyllum squarrosum) | - | 2.720 | ||||||||||||||||||||||||||
流沙地 Shifting sand | <1.0 | 沙米(Agriophyllum squarrosum)、花棒(Hedysarum scoparium) | 0 | 3.038 | 15 699.80 |
表1 不同年代恢复区生态环境的现状
Table 1 The status of ecological environmental succession in different age of re-vegetation
恢复年代 Age of re- vegetation | 植被总盖度 Total vegetation coverage (%) | 优势种 Dominant species | 土壤结皮 Soil crust (cm) | 土壤含水量 Soil moisture (%) | 土壤微生物 Soil microbe amount (103·g-1) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1956 | 25.19 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides) | 2.1 | 1.162 | 32 253.49 | ||||||||||||||||||||||||
1964 | 27.67 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、柠条(Caragana korshinskii) | 1.0 | 1.170 | 63 794.88 | ||||||||||||||||||||||||
1981 | 36.37 | 沙米(Agriophyllum squarrosum)、油蒿(Artemisia ordosica) | 0.4 | 1.516 | 2 073.10 | ||||||||||||||||||||||||
1987 | 30.00 | 油蒿(Artemisia ordosica)、沙木蓼(Atraphaxis bracteata) | 0.3 | 2.027 | |||||||||||||||||||||||||
1990 | 40.00 | 油蒿(Artemisia ordosica)、雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides) | 0.2 | 2.560 | |||||||||||||||||||||||||
2000 | 雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis poaeoides)、沙米(Agriophyllum squarrosum) | - | 2.720 | ||||||||||||||||||||||||||
流沙地 Shifting sand | <1.0 | 沙米(Agriophyllum squarrosum)、花棒(Hedysarum scoparium) | 0 | 3.038 | 15 699.80 |
恢复年限 Year since re-vegetation (a) | 0~5 cm (g·kg-1) | 5~10 cm (g·kg-1) | 10~20 cm (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
SOC | TN | C/N | SOC | TN | C/N | SOC | TN | C/N | |
0 | 0.23±0.01a | 0.01±0.01a | 22.92a | 0.26±0a | 0.01±0.01a | 26.03a | 0.24±0a | 0.01±0.01a | 24.21a |
4 | 0.93±0.02a | 0.11±0.01b | 8.45b | 0.96±0a | 0.10±0.01b | 9.60b | 0.90±0abc | 0.09±0.01b | 10.00b |
14 | 1.78±0.01b | 0.20±0.01c | 8.90b | 1.76±0b | 0.13±0.01c | 13.54c | 1.15±0bc | 0.11±0.01b | 10.45b |
17 | 1.76±0.11b | 0.21±0.03c | 9.37bc | 1.77±0.3b | 0.14±0.01c | 14.22c | 1.15±0.25ab | 0.11±0.01b | 10.66b |
23 | 2.54±0.18b | 0.26±0.04c | 9.50bc | 1.79±0.3b | 0.16±0.01c | 11.43c | 1.16±0.23bc | 0.12±0.02b | 10.66b |
40 | 4.42±0.41c | 0.35±0.04d | 12.37c | 2.38±0.33c | 0.20±0.04d | 13.21c | 1.43±0.2c | 0.14±0.03b | 11.83bc |
48 | 6.69±0.74d | 0.42±0.06d | 16.01d | 4.44±0.39d | 0.26±0.04d | 18.07d | 2.42±0.28d | 0.15±0.02b | 16.96c |
表2 不同植被恢复区土壤(0~5、5~10和10~20 cm)有机碳(SOC)和全氮(TN)的变化
Table 2 Variation of organic carbon (SOC) and total nitrogen (TN) in soils of different year since re-vegetation
恢复年限 Year since re-vegetation (a) | 0~5 cm (g·kg-1) | 5~10 cm (g·kg-1) | 10~20 cm (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
SOC | TN | C/N | SOC | TN | C/N | SOC | TN | C/N | |
0 | 0.23±0.01a | 0.01±0.01a | 22.92a | 0.26±0a | 0.01±0.01a | 26.03a | 0.24±0a | 0.01±0.01a | 24.21a |
4 | 0.93±0.02a | 0.11±0.01b | 8.45b | 0.96±0a | 0.10±0.01b | 9.60b | 0.90±0abc | 0.09±0.01b | 10.00b |
14 | 1.78±0.01b | 0.20±0.01c | 8.90b | 1.76±0b | 0.13±0.01c | 13.54c | 1.15±0bc | 0.11±0.01b | 10.45b |
17 | 1.76±0.11b | 0.21±0.03c | 9.37bc | 1.77±0.3b | 0.14±0.01c | 14.22c | 1.15±0.25ab | 0.11±0.01b | 10.66b |
23 | 2.54±0.18b | 0.26±0.04c | 9.50bc | 1.79±0.3b | 0.16±0.01c | 11.43c | 1.16±0.23bc | 0.12±0.02b | 10.66b |
40 | 4.42±0.41c | 0.35±0.04d | 12.37c | 2.38±0.33c | 0.20±0.04d | 13.21c | 1.43±0.2c | 0.14±0.03b | 11.83bc |
48 | 6.69±0.74d | 0.42±0.06d | 16.01d | 4.44±0.39d | 0.26±0.04d | 18.07d | 2.42±0.28d | 0.15±0.02b | 16.96c |
恢复年限 Year since re-vegeta- tion (a) | 土壤颗粒组成分布 Distribution of particle size fractions (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.5~0.1 | 0.1~0.05 | <0.05 | 0.5~0.1 | 0.1~0.05 | <0.05 | 0.5~0.1 | 0.1~0.05 | <0.05 | |
0~5 cm | 5~10 cm | 10~20 cm | |||||||
0 | 98.73±0a | 0.90±0a | 0.37±0a | 98.53±0a | 1.20±0a | 0.27±0a | 98.30±0a | 1.40±0a | 0.30±0a |
4 | 96.75±0a | 2.30±0a | 0.95±0a | 96.73±0ab | 2.30±0a | 0.97±0ab | 96.65±0ab | 2.49±0ab | 0.86±0a |
14 | 75.29±0b | 12.40±0b | 12.31±0b | 89.87±0bc | 6.07±0b | 4.06±0bc | 95.95±0ab | 2.86±0ab | 1.19±0a |
17 | 75.32±3.33b | 14.10±1.8b | 10.58±1.55b | 83.80±1.49cd | 9.10±0.78bc | 7.10±0cd | 92.26±1.12bc | 4.59±0.7bc | 3.16±0.51b |
23 | 69.83±4.88b | 16.34±2.9bc | 13.83±2.25b | 81.09±2.53de | 11.38±1.57cd | 7.53±0.96cd | 89.24±0.69c | 6.39±0.39c | 4.37±0.41bc |
40 | 59.00±4.52c | 20.44±2.28c | 20.57±2.26c | 75.71±3.32ef | 13.82±1.61de | 10.48±1.75d | 84.81±2.2d | 9.08±1.38d | 6.12±0.97cd |
48 | 57.65±4.98d | 20.33±1.71c | 22.02±3.28c | 70.17±4.65f | 15.13±2.25e | 14.70±2.4e | 81.85±3.05d | 10.81±1.79d | 7.34±1.3d |
表3 不同植被恢复区土壤(0~5、5~10和10~20 cm)颗粒组成分布(%)
Table 3 Distribution of particle size fractions in soils of different year since re-vegetation
恢复年限 Year since re-vegeta- tion (a) | 土壤颗粒组成分布 Distribution of particle size fractions (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.5~0.1 | 0.1~0.05 | <0.05 | 0.5~0.1 | 0.1~0.05 | <0.05 | 0.5~0.1 | 0.1~0.05 | <0.05 | |
0~5 cm | 5~10 cm | 10~20 cm | |||||||
0 | 98.73±0a | 0.90±0a | 0.37±0a | 98.53±0a | 1.20±0a | 0.27±0a | 98.30±0a | 1.40±0a | 0.30±0a |
4 | 96.75±0a | 2.30±0a | 0.95±0a | 96.73±0ab | 2.30±0a | 0.97±0ab | 96.65±0ab | 2.49±0ab | 0.86±0a |
14 | 75.29±0b | 12.40±0b | 12.31±0b | 89.87±0bc | 6.07±0b | 4.06±0bc | 95.95±0ab | 2.86±0ab | 1.19±0a |
17 | 75.32±3.33b | 14.10±1.8b | 10.58±1.55b | 83.80±1.49cd | 9.10±0.78bc | 7.10±0cd | 92.26±1.12bc | 4.59±0.7bc | 3.16±0.51b |
23 | 69.83±4.88b | 16.34±2.9bc | 13.83±2.25b | 81.09±2.53de | 11.38±1.57cd | 7.53±0.96cd | 89.24±0.69c | 6.39±0.39c | 4.37±0.41bc |
40 | 59.00±4.52c | 20.44±2.28c | 20.57±2.26c | 75.71±3.32ef | 13.82±1.61de | 10.48±1.75d | 84.81±2.2d | 9.08±1.38d | 6.12±0.97cd |
48 | 57.65±4.98d | 20.33±1.71c | 22.02±3.28c | 70.17±4.65f | 15.13±2.25e | 14.70±2.4e | 81.85±3.05d | 10.81±1.79d | 7.34±1.3d |
恢复年限 Year since re- vegetation (a) | 物理稳定性指数 (Physical stability index, St) (%) | ||
---|---|---|---|
0~5 cm (包括结皮层 Including soil crust) | 5~10 cm | 10~20 cm | |
0 | 10.72 | 16.60 | 13.79 |
4 | 16.88 | 17.06 | 18.04 |
14 | 2.49 | 7.47 | 16.66 |
17 | 2.87 | 4.30 | 6.27 |
23 | 3.17 | 4.10 | 4.58 |
40 | 3.70 | 3.92 | 4.03 |
48 | 5.24 | 5.21 | 5.68 |
表4 植被恢复过程中土壤物理稳定性指数(St)
Table 4 The physical stability index (St) in the different year since re-vegetation
恢复年限 Year since re- vegetation (a) | 物理稳定性指数 (Physical stability index, St) (%) | ||
---|---|---|---|
0~5 cm (包括结皮层 Including soil crust) | 5~10 cm | 10~20 cm | |
0 | 10.72 | 16.60 | 13.79 |
4 | 16.88 | 17.06 | 18.04 |
14 | 2.49 | 7.47 | 16.66 |
17 | 2.87 | 4.30 | 6.27 |
23 | 3.17 | 4.10 | 4.58 |
40 | 3.70 | 3.92 | 4.03 |
48 | 5.24 | 5.21 | 5.68 |
图2 植被恢复过程中土壤有机碳(SOC)和全氮含量与土壤沙粒、极细沙和粘粉粒含量的关系
Fig.2 Relationship between organic carbon (SOC) and N content and sand, fine sand and silt-clay contents in soils in re-vegetation
[1] | Burke JC, Yonker CM, Pontoon WJ, Cole CV, Flach K, Schimel DS (1989). Texture, climate, and cultivation effects on soil organic matter content in U.S. Grassland soils. Soil Science Society of American Journal, 53,800-805. |
[2] | Beijing Forestry University (北京林业大学) (1993). Pedology (土壤学). China Forestry Publishing House, Beijing, 114-117. (in Chinese) |
[3] | College of Nanjing Agriculture(南京农学院) (1980). Soil Analysis for Agriculture(土壤农化分析). China Agriculture Press, Beijing, 33-34. (in Chinese) |
[4] | Du Y(杜岳), Yao DL(姚德良), Li XR(李新荣) (2002). A land-atmosphere coupling model and mechanism of the crust layer. Journal of Desert Research(中国沙漠), 22,545-551. (in Chinese with English abstract) |
[5] | Franzluebbers AJ, Stuedemann JA, Schomberg HH, Wilkinson SR (2000). Soil organic C and N pools under long-term pasture management in the Southern Piedomont USA. Soil Biology & Biochemistry, 32,469-478. |
[6] | Gregorich EG, Ellert BH (1993). Light fraction and macroorganic matter in mineral soils. In: Carter MR ed. Soil Sampling and Methods of Analysis. CRC Press, Boca Raton, 397-407. |
[7] | Groffman PM, Eagan P, Sullivan WM, Lemunyon JL (1996). Grass species and soil type effects on microbial biomass and activity. Plant and Soil, 183,61-67. |
[8] | Herrick JE, Wander MM (1997). Relationship between soil organic carbon and soil quality in croppedand rangeland soils: the importance of distribution, composition, and soil biological activity. In: Lal R ed. Soil Processes and the Carbon Cycle. CRC Press, Boca Raton,405-425. |
[9] | Hontoria C, Rodriguez-Murillo JC, Saa A (1999). Relationship between soil carbon and site characteristics in Peninsular Spain. Soil Science Society of America Journal, 63,614-621. |
[10] | Jeffrery SK, David PT, Dodson RF (1997). Spatial patterns in soil organic carbon pool size in the Northwestern United States. In: Lal R ed. Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, 29-44. |
[11] | Jenkinson DS, Adams DE, Wild A (1991). Model estimates of CO 2 emissions from soil in response to globe warming. Nature, 351,304-306. |
[12] | Karlen DL, Rosek MJ, Doran JC (1999). Conservation reserve program effects on soil quality indicators. Journal of Soil and Water Conservation, 54(1),439-444. |
[13] | Lal R (2000). Carbon sequestration in drylands. Annual of Arid Zone, 39(1),1-10. |
[14] | Lal R, Logan TJ, Fausey NR (1990). Long-term tillage effects on Mollic orchraqualf in northwestern Ohio soil nutrient profile. Soil & Tillage Research, 15,371-382. |
[15] | Li JG (李金贵) (1991). Climate characteristics in Shapotou area. In: Shapotou Desert Research and Experiment Station Lanzhou Institute of Desert Research, Chinese Academy of Sciences (中国科学院兰州沙漠研究所沙坡头沙漠科学研究站) ed. Study on Shifting Sand Control (2)(流沙治理研究二). Ningxia People's Publishing House, Yinchuan, 417-424. (in Chinese) |
[16] | Li SZ(李守忠), Xiao HL(肖洪浪), Song YX(宋耀选), Li JG(李金贵), Liu LC(刘立超) (2002). Interception of soil crust for precipitation in re-vegetated sand dunes in the Tengger Desert. Journal of Desert Reseach(中国沙漠), 22,612-616. (in Chinese with English abstract) |
[17] | Li XR(李新荣), Shi QH(石庆辉), Zhang JG(张景光), Liu LC(刘立超) (1998). Plant diversity in the process of succession of artificial vegetation types in Shapotou region. Journal of Desert Research(中国沙漠), 18(Suppl. 4),23-29. (in Chinese with English abstract) |
[18] | Li XR, Xiao HL, Zhang JG, Wang XP (2004). Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, Northern China. Restoration Ecology, 12,376-390. |
[19] | Liu GS(刘光崧), Jiang NH (蒋能慧), Zhang LD(张连第), Liu ZL (刘兆礼) (1996). Soil Physical and Chemical Analysis and Description of Soil Profiles (土壤理化分析与剖面描述). Standards Press of China, Beijing. (in Chinese) |
[20] | Nichols JD (1984). Relation of organic carbon to soil properties and climate in the southern Great Plains. Soil Science Society of American Journal, 48,1382-1384. |
[21] | Pieri CJMG (1992). Fertility of Soils: a Future for Farming in the West African Savannah. Springer Verlag, Berlin, 348. |
[22] | Shi QH(石庆辉), Liu JQ(刘家琼) (1995). Dynamical variation of natural plants in artificial vegetation area along both sides of railway in Shapotou. In: Liu JQ (刘家琼) ed. Study of Desert Ecosystem(沙漠生态系统研究). Gansu Science and Technology Publishing House, Lanzhou, 105-115. (in Chinese with English abstract) |
[23] | Shi QH(石庆辉) (1991-1992). Succession of artificial vegetation on Northern side of Bao-Lan railway in the Shapotou area at the southeastern Fringe of the Tennger Desert. Annual Report-Shapotou Desert Experimental Research Station, Academia Sinica (中国科学院兰州沙漠研究所沙坡头试验研究站年报), 89-107. (in Chinese with English abstract) |
[24] | Su YZ(苏永中), Zhao HL(赵哈林) (2003). Losses of soil organic carbon and nitrogen and their mechanisms in the desertification process of sandy farmlands in Horqin sandy land. Scientia Agricultura Sinica(中国农业科学), 36,928-934. (in Chinese with English abstract) |
[25] | Trujillo W, Amezquita E, Fisher MJ (1997). Soil organic carbon dynamics and land use in the Colobian Savannas. I. Aggregate size distribution. In: Lal R ed. Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, 267-280. |
[26] | Wang KF(王康富) (1991). Studies on sand dunes stabilization in Shapotou area. In: Shapotou Desert Research and Experiment Station Lanzhou Institute of Desert Research, Chinese Academy of Sciences (中国科学院兰州沙漠研究所沙坡头沙漠科学研究站) ed. Study on Shifting Sand Control (2)(流沙治理研究二), Ningxia People's Publishing House, Yinchuan, 13-26. (in Chinese) |
[27] | Wang XP(王新平), Li XR(李新荣), Zhang JG(张景光), Zhou HY(周海燕), Berndtsson R (2002). Variation of soil temperature and thermal diffusivity in vegetation and bare sand dunes in arid desert region. Journal of Desert Rresearch(中国沙漠), 22,344-349. (in Chinese with English abstract) |
[28] | Xiao HL(肖洪浪), Li XR(李新荣), Duan ZH(段争虎), Li T(李涛), Li SZ(李守中) (2003). Succession of plant soil system in the process of mobile dunes stabilization. Journal of Desert Research(中国沙漠), 23,605-611. (in Chinese with English abstract) |
[29] | Xiao HL(肖洪浪), Zhang JX(张继贤), Li JG(李金贵) (1998). Succession of soil nutrient in the process of mobile dunes stabilization. Journal of Desert Research(中国沙漠), 16(Suppl.1),64-69. (in Chinese with English abstract) |
[30] | Yu YJ(于永江), Lin QG(林庆功), Shi QH(石庆辉), Liu JQ(刘家琼) (2002). Changes of habitat and vegetation in man-made vegetation area of Shapotou section along Baotou-Lanzhou railway. Acta Ecologica Sinica(生态学报), 22,433-439. (in Chinese with English abstract) |
[31] | Zhao XL(赵兴梁) (1988). A study on the control shifting sand dunes of Shapotou region in the edge of southeastern Tengger Desert. In: Shapotou Desert Research and Experiment Station Lanzhou Institute of Desert Research, Chinese Academy of Sciences (中国科学院兰州沙漠研究所沙坡头沙漠科学研究站) ed. Study on Shifting Sand Control (2)(流沙治理研究二). Ningxia People's Publishing House, Yinchuan, 101-120. (in Chinese) |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[6] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[7] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[8] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[9] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[10] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[13] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[14] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[15] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19