植物生态学报 ›› 2016, Vol. 40 ›› Issue (1): 13-23.DOI: 10.17521/cjpe.2015.0236
张琪1,2, 袁秀亮1,2, 陈曦1, 罗格平1, 李龙辉1,*
出版日期:
2016-01-01
发布日期:
2016-01-28
通讯作者:
李龙辉
作者简介:
# 共同第一作者
基金资助:
ZHANG Qi1,2, YUAN Xiu-Liang1,2, CHEN Xi1, LUO Ge-Ping1, LI Long-Hui1,*
Online:
2016-01-01
Published:
2016-01-28
Contact:
Long-Hui LI
About author:
# Co-first authors
摘要:
归一化植被指数(NDVI)能够反映植被生长状况, 被广泛应用于区域乃至全球的植被变化研究中。该文利用1982-2012年GIMMS-NDVI数据, 通过基于像元的线性趋势分析、偏相关分析, 基于场域的经验正交分解(EOF)、奇异值分解(SVD), 综合时间和空间两个维度上的信息, 研究了近31年来中亚植被的变化及其变化中的区域差异, 分析了植被对气候变化的响应关系。线性趋势分析发现, 34%的中亚植被NDVI显著增长(p < 0.05), 山区植被NDVI的增长速率可达到每年0.004。偏相关分析表明, 63%的中亚植被受到降水的显著影响(p < 0.05, 仅4%为负相关), 而32%的植被受到气温的显著影响(p < 0.05, 仅9%为正相关)。EOF分析发现, 中亚植被NDVI的变化表现出较大的空间差异: 山区及东北部的植被NDVI变化主要分为3个阶段, 即先增长(1982-1994年)、后波动(1994-2002年)、然后继续增长(2002-2012年); 而西北部平原区的植被NDVI变化主要表现为两个阶段, 即先增长(1982-1994年)而后减少(1994-2012年)。SVD分析表明: 1982-2012年间中亚植被受到降水和气温的共同影响, 植被NDVI的空间变化特征与降水的空间变化特征较为一致, 但西北部和山区的植被NDVI对气温的响应存在差异。
张琪, 袁秀亮, 陈曦, 罗格平, 李龙辉. 1982-2012年中亚植被变化及其对气候变化的响应. 植物生态学报, 2016, 40(1): 13-23. DOI: 10.17521/cjpe.2015.0236
ZHANG Qi, YUAN Xiu-Liang, CHEN Xi, LUO Ge-Ping, LI Long-Hui. Vegetation change and its response to climate change in Central Asia from 1982 to 2012. Chinese Journal of Plant Ecology, 2016, 40(1): 13-23. DOI: 10.17521/cjpe.2015.0236
图1 1982-2012年中亚植被年均归一化植被指数(NDVI)(灰线为等高线, 间距1000 m) (A)、年降水量(B)、年平均气温(C); 1982-2012年年均NDVI (D) (p < 0.05)、年降水量(E)和年平均气温(F)的空间变化趋势(点代表p < 0.05); 1982-2012年年均NDVI (G)、年降水量(H)和年平均气温(I)的年际变化趋势。
Fig. 1 The annual mean of normalized difference vegetation index (NDVI)(The gray line indicates contour line, the interval between lines is 1000 m) (A), annual precipitation (B), annual mean air temperature (C) in the period of 1982-2012; the spatial pattern of annual mean NDVI change (D) (p < 0.05), annual precipitation change (E) and annual mean air temperature change (F) (the point represents p < 0.05) in the period of 1982-2012; the temporal trends of the annual mean NDVI (G), the annual precipitation (H), the annual mean air temperature (I) in the period of 1982-2012.
图2 1982-2012年中亚植被年均归一化植被指数与年降水量(A)和年平均气温(B)的偏相关系数(p < 0.05)。
Fig. 2 The partial correlation coefficients between annual mean normalized difference vegetation index (NDVI) and annual precipitation (A) and annual mean air temperature (B) in the period of 1982-2012 (p < 0.05).
图3 1982-2012年中亚植被年均归一化植被指数(NDVI)经验正交分解的前两个主要空间模态(A、B)及其对应的时间系数(C、D)。
Fig. 3 The first two leading spatial modes (A, B) and their associated time coefficients (C, D) obtained from empirical orthogonal function of annual mean normalized difference vegetation index (NDVI) over Central Asia in the period of 1982-2012.
模态 Mode | 方差贡献率 Variance contribution (%) | ||
---|---|---|---|
归一化植被指数 Normalized difference vegetation index | 降水量 Precipitation | 气温 Air temperature | |
1 | 22 | 35 | 74 |
2 | 17 | 15 | 10 |
3 | 9 | 8 | 6 |
累计方差 Cumulative variance | 48 | 58 | 90 |
表1 中亚植被年均归一化植被指数、年降水量、年平均气温经验正交分解的前三个空间模态的方差贡献率。
Table 1 The variance contribution by the first three leading modes of annual mean normalized difference vegetation index (NDVI), annual precipitation and annual mean air temperature in Central Asia from empirical orthogonal function.
模态 Mode | 方差贡献率 Variance contribution (%) | ||
---|---|---|---|
归一化植被指数 Normalized difference vegetation index | 降水量 Precipitation | 气温 Air temperature | |
1 | 22 | 35 | 74 |
2 | 17 | 15 | 10 |
3 | 9 | 8 | 6 |
累计方差 Cumulative variance | 48 | 58 | 90 |
图4 1982-2012年中亚年降水量经验正交分解的前两个主要空间模态(A, B)及其对应的时间系数(C, D)。
Fig. 4 The first two leading spatial patterns (A, B) and their associated time coefficients (C, D) obtained from empirical orthogonal function of annual precipitation over Central Asia in the period of 1982-2012.
图5 1982-2012年中亚年平均气温经验正交分解的第一个主要空间模态(A)及其对应的时间系数(B)。
Fig. 5 The first leading spatial patterns (A) and its associated time coefficients (B) obtained from empirical orthogonal function of annual mean air temperature over Central Asia in the period of 1982-2012.
图6 1982-2012年中亚植被年均归一化植被指数(NDVI) (A、B、C)和年降水量(D、E、F)奇异值分解得到的前3个主要特征向量的空间分布和时间系数(G、H、I)。
Fig. 6 Spatial patterns of the first three leading modes obtained from singular value decomposition between normalized difference vegetation index (NDVI) (A, B, C) and annual precipitation (D, E, F) for the period of 1982 to 2012, and their corresponding time coefficients (G, H, I).
模态 Mode | NDVI与降水量 NDVI and precipitation | NDVI与气温 NDVI and air temperature | |||
---|---|---|---|---|---|
方差贡献率 Variance contribution (%) | 相关系数 Correlation coefficients | 方差贡献率 Variance contribution (%) | 相关系数 Correlation coefficients | ||
1 | 49 | 0.73* | 77 | 0.64* | |
2 | 19 | 0.81* | 13 | -0.38 | |
3 | 8 | 0.75* | 4 | 0.02 |
表2 中亚植被年均归一化植被指数(NDVI)与年降水量、年平均气温奇异值分解的前三个空间模态的方差贡献率。
Table 2 The variance contribution by the first three leading modes of singular value decomposition between annual mean normalized difference vegetation index (NDVI) and annual precipitation, and annual mean air temperature in Central Asia.
模态 Mode | NDVI与降水量 NDVI and precipitation | NDVI与气温 NDVI and air temperature | |||
---|---|---|---|---|---|
方差贡献率 Variance contribution (%) | 相关系数 Correlation coefficients | 方差贡献率 Variance contribution (%) | 相关系数 Correlation coefficients | ||
1 | 49 | 0.73* | 77 | 0.64* | |
2 | 19 | 0.81* | 13 | -0.38 | |
3 | 8 | 0.75* | 4 | 0.02 |
图7 1982-2012年中亚植被归一化植被指数(NDVI)(A)和气温(B)奇异值分解得到的第一个主要特征向量的空间分布和时间系数(C)。
Fig. 7 Spatial patterns of the first leading modes obtained from singular value decomposition between normalized difference vegetation index (NDVI) (A) and annual mean air temperature (B) for the period of 1982 to 2012 and associated time coefficients (C).
1 | Bojanowski JS, Kowalik W, Bochenek Z (2009). Noise reduction of NDVI time series: A robust method based on Savitzky-Golay filter.Annals of Geomatics, 7, 13-21. |
2 | Chen FH, Huang W, Jin LY, Chen JH, Wang JS (2011). Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming.Science China Earth Sciences, 54, 1812-1821. |
3 | Chen X (2012). Retrieval and Analysis of Evapotranspiration in Central Areas of Asia. China Meteorological Press, Beijing. 111. (in Chinese) |
[陈曦 (2012). 亚洲中部干旱区蒸散发研究. 气象出版社, 北京. 111.] | |
4 | de Beurs KM, Henebry GM (2004). Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan.Remote Sensing of Environment, 89, 497-509. |
5 | de Beurs KM, Wright CK, Henebry GM (2009). Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan.Environmental Research Letters, 4, 940-941. doi: 10.1016/ j.rse.2003.11.006. |
6 | Du JQ, Shu JM, Yin JQ, Yuan XJ, Jiaerheng A, Xiong SS, He P, Liu WL (2015). Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China.International Journal of Applied Earth Observation and Geoinformation, 38, 216-228. |
7 | Fang JY, Piao SL, He JS, Ma WH (2003). Vegetation activity increased in China in nearly 20 years.Science in China Series C: Life Sciences, 33, 554-565. (in Chinese) |
[方精云, 朴世龙, 贺金生, 马文红 (2003). 近20年来中国植被活动在增强. 中国科学(C辑:生命科学), 33, 554-565.] | |
8 | Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012). Greenness in semi-arid areas across the globe 1981-2007: An earth observing satellite based analysis of trends and drivers.Remote Sensing of Environment, 121, 144-158. |
9 | Gessner U, Naeimi V, Klein I, Kuenzer C, Klein D, Dech S (2013). The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia.Global and Planetary Change, 110, 74-87. |
10 | Gimeno R, Manchado B, Mı?nguez R (1999). Stationarity tests for financial time series.Physica A: Statistical Mechanics and its Applications, 269, 72-78. |
11 | Hu ZY, Zhang C, Hu Q, Tian HQ (2014). Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets.Journal of Climate, 27, 1143-1167. |
12 | IGBP (The International Geosphere Biosphere Programme) (1997). The Terrestrial Biosphere and Global Change. Cambridge University Press, Stockholm, Sweden. |
13 | Jiang B, Liang SL, Yuan WP (2015). Observational evidence for impacts of vegetation change on local surface climate over northern China using the Granger causality test.Journal of Geophysical Research, 120, 1-12. |
14 | Johnson RA, Wichern DW (2007). Applied Multivariate Statistical Analysis. 6th edn. Pearson Prentice Hall Press, US. 401-409. |
15 | Jordi A, Basterretxea G (2012). Using SVD analysis of combined altimetry and ocean color satellite data for assessing basin scale physical-biological coupling in the Mediterranean Sea.Remote Sensing of Biomass, 6, 123-140. |
16 | Kariyeva J, van Leeuwen WJD, Woodhouse CA (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008).Frontiers of Earth Science, 6, 206-225. |
17 | Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005). Impacts of climate and land-cover changes in arid lands of Central Asia.Journal of Arid Environments, 62, 285-308. |
18 | Lioubimtseva E, Henebry GM (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations.Journal of Arid Environments, 73, 963-977. |
19 | Loboda TV, Giglio L, Boschetti L, Justice CO (2012). Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia.Frontiers of Earth Science, 6, 196-205. |
20 | Luo GP, Han QF, Zhou DC, Li L, Chen X, Li Y, Hu YK, Li BL (2012). Moderate grazing can promote aboveground primary production of grassland under water stress.Ecological Complexity, 11, 126-136. |
21 | Mohammat A, Wang XH, Xu XT, Peng LQ, Yang Y, Zhang XP, Myneni RB, Piao SL (2013). Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178-179, 21-30. |
22 | Park HS, Sohn BJ (2010). Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations.Journal of Geophysical Research, 115, D14101. doi: 10.1029/2009JD012752. |
23 | Peng SS, Chen AP, Xu L, Cao CX, Fang JY, Myneni RB, Pinzon JE, Tucker CJ, Piao SL (2011). Recent change of vegetation growth trend in China.Environmental Research Letters, 6, 044027. doi: 10.1088/1748-9326/6/4/044027. |
24 | Piao SL, Wang XH, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology, 17, 3228-3239. |
25 | Prohaska JT (1976). A technique for analyzing the linear relationships between two meteorological fields.Monthly Weather Review, 104, 1345-1353. |
26 | Propastin PA, Kappas M, Muratova NR (2008a). Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003.Journal of Environmental Informatics, 12, 75-87. |
27 | Propastin PA, Kappas M, Muratova NR (2008b). A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia.Management of Environmental Quality, 19, 579-596. |
28 | Slayback DA, Pinzon JE, Los SO, Tucker CJ (2003). Northern hemisphere photosynthetic trends 1982-99.Global Change Biology, 9, 1-15. |
29 | Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S (2012). Detecting causality in complex ecosystems.Science, 338, 496-500. |
30 | Suo YX, Wang ZX, Liu C, Yu BH (2009). Relationship |
31 | between NDVI and precipitation and temperature in Middle Asia during1982-2002.Resources Science, 31, 1422-1429. (in Chinese with English abstract) |
[索玉霞, 王正兴, 刘闯, 于伯华 (2009). 中亚地区1982年至2002年植被指数与气温和降水的相关性分析. 资源科学, 31, 1422-1429.] | |
32 | Tsonis AA, Deyle ER, May RM, Sugihara G, Swanson K, Verbeten JD, Wang GL (2015). Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.Proceedings of the National Academy of Sciences of the United States of America, 112, 3253-3256. |
33 | Wei FY (2007). Modern Climate Statistics and Forecast Technology. 2nd edn. China Meteorological Press, Beijing. 114. (in Chinese) |
[魏凤英 (2007). 现代气候统计诊断与预测技术第二版. 气象出版社, 北京. 114.] | |
34 | Wright CK, de Beurs KM, Akhmadieva ZK, Groisman PY, Henebry GM (2009). Reanalysis data underestimate significant changes in growing season weather in Kazakhstan.Environmental Research Letters, 4, 0450202. doi: 10. 1088/1748- 9326/4/4/045020. |
35 | Xu XR (2005). Remote Sensing Physics. The Peking University Publishing House, Beijing. 176. (in Chinese) |
[徐希濡 (2005). 遥感物理. 北京大学出版社, 北京. 176.] | |
36 | Zhang XZ (2014). Main models of variations of autumn vegetation greenness in the mid-latitude of north hemisphere in 1982-2011.Scientia Geographica Sinica, 34, 1226-1232. (in Chinese with English abstract) |
[张学珍 (2014). 1982-2011年北半球中纬度秋季植被绿度变化的主要模态. 地理科学, 34, 1226-1232.] | |
37 | Zhao X, Tan K, Zhao SQ, Fang JY (2011). Changing climate affects vegetation growth in the arid region of the northwestern China.Journal of Arid Environments, 75, 946-952. |
38 | Zhou KF, Zhang Q, Chen X, Sun L (2007). Features and trends of the environmental change in the arid areas in Central Asia.Science China Series D: Earth Sciences, 50, 142-148. |
39 | Zhou Y, Zhang L, Fensholt R, Wang K, Vitkovskaya I, Tian F (2015). Climate contributions to vegetation variations in Central Asian drylands: Pre-and Post-USSR collapse.Remote Sensing, 7, 2449-2470. |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[3] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[4] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[5] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[6] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[7] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[8] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[9] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[10] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[11] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[12] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[13] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[14] | 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. |
[15] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19