植物生态学报 ›› 2016, Vol. 40 ›› Issue (5): 469-479.DOI: 10.17521/cjpe.2016.0021
所属专题: 生物多样性
王茜茜1, 龙文兴1,*, 杨小波1, 熊梦辉1, 康勇1, 黄瑾1, 王旭2, 洪小江3, 周照骊3, 陆雍泉4, 方精4, 李时兴4
出版日期:
2016-05-10
发布日期:
2016-05-25
通讯作者:
龙文兴
基金资助:
Xi-Xi WANG1, Wen-Xing LONG1,*, Xiao-Bo YANG1, Meng-Hui XIONG1, Yong KANG1, Jin HUANG1, Xu WANG2, Xiao-Jiang HONG3, Zhao-Li ZHOU3, Yong-Quan LU4, Jing FANG4, Shi-Xing LI4
Online:
2016-05-10
Published:
2016-05-25
Contact:
Wen-Xing LONG
摘要:
以分布在海南岛西部(霸王岭国家级自然保护区, 21个样方)、西南部(尖峰岭国家级自然保护区, 12个样方)和中部(黎母山省级自然保护区, 15个样方)的热带云雾林为研究对象, 研究α及β物种多样性、功能多样性、谱系多样性的变化, 为植物多样性的保护提供科学依据。结果表明: 尖峰岭群落树木个体多度、物种丰富度最大, 黎母山群落树木个体多度、物种丰富度最小; 黎母山群落间物种组成差异最大, 霸王岭群落间物种组成差异最小, 海南岛霸王岭(西部)、尖峰岭(西南部)和黎母山(中部) 3个林区热带云雾林物种多样性差异可能与空气温度和相对湿度有关。尖峰岭群落内功能丰富度、Rao’s二次熵最低, 功能均匀度最高, 群落间平均成对性状距离最小, 反映群落构建主要受环境筛影响; 霸王岭群落Rao’s二次熵最高, 功能均匀度最低, 群落间平均成对性状距离最大, 反映群落构建主要受限制相似性影响; 黎母山群落内功能丰富度最高, 群落间平均最近性状距离最大, 表明限制相似性在黎母山热带云雾林群落构建中的作用更重要。霸王岭群落内谱系多样性、物种间平均最近相邻谱系距离均较大, 反映物种间谱系关系趋于发散; 黎母山群落内谱系多样性、物种间平均成对谱系距离及群落间平均成对谱系距离均最小, 反映物种间谱系关系趋于聚集; 而尖峰岭群落内物种间平均成对谱系距离、群落间平均成对谱系距离最大, 但物种间平均最近相邻谱系距离最小, 反映物种间谱系关系既具有发散又具有聚集的共存格局。因此, 海南岛热带云雾林群落植物多样性变化格局与环境及物种间相互作用有关。
王茜茜, 龙文兴, 杨小波, 熊梦辉, 康勇, 黄瑾, 王旭, 洪小江, 周照骊, 陆雍泉, 方精, 李时兴. 海南岛3个林区热带云雾林植物多样性变化. 植物生态学报, 2016, 40(5): 469-479. DOI: 10.17521/cjpe.2016.0021
Xi-Xi WANG, Wen-Xing LONG, Xiao-Bo YANG, Meng-Hui XIONG, Yong KANG, Jin HUANG, Xu WANG, Xiao-Jiang HONG, Zhao-Li ZHOU, Yong-Quan LU, Jing FANG, Shi-Xing LI. Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island. Chinese Journal of Plant Ecology, 2016, 40(5): 469-479. DOI: 10.17521/cjpe.2016.0021
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样方面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfengling | 1 187.17-1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥 Castanopsis fabri, 丛花厚壳桂 Cryptocarya densiflora, 美丽新木姜子 Neolitsea pulchella, 黄叶树 Xanthophyllum hainanense |
霸王岭 Bawangling | 1 313.24-1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树 Distylium racemosum, 赤楠 Syzygium buxifolium, 九节 Psychotria asiatica, 黄杞 Engelhardia rox- burghiana |
黎母山 Limushan | 1 363.73-1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 野茶 Camellia sinensis var. assamica, 岭南青冈 Cyclob- alanopsis championii, 罗浮锥 Castanopsis fabri, 细枝柃 Eurya loquaiana |
表1 样地概况
Table 1 Information of the study sites
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样方面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfengling | 1 187.17-1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥 Castanopsis fabri, 丛花厚壳桂 Cryptocarya densiflora, 美丽新木姜子 Neolitsea pulchella, 黄叶树 Xanthophyllum hainanense |
霸王岭 Bawangling | 1 313.24-1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树 Distylium racemosum, 赤楠 Syzygium buxifolium, 九节 Psychotria asiatica, 黄杞 Engelhardia rox- burghiana |
黎母山 Limushan | 1 363.73-1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 野茶 Camellia sinensis var. assamica, 岭南青冈 Cyclob- alanopsis championii, 罗浮锥 Castanopsis fabri, 细枝柃 Eurya loquaiana |
图2 尖峰岭(JFL)、霸王岭(BWL)和黎母山(LMS)热带云雾林α (A、B)及β (C、D)物种多样性比较。图中不同小写字母表示样地间有显著差异(p < 0.05)。粗实线表示中位数, 虚线表示整体平均值。
Fig. 2 Comparisons in α (panel A and B) and β (panel C and D) species diversity among Jianfengling (JFL), Bawangling (BWL) and Limushan (LMS). Different low-case letters indicate significant differences among plots (p < 0.05). Heavy horizontal lines indicate median values and dashed horizontal lines indicate mean values.
图3 尖峰岭(JFL)、霸王岭(BWL)和黎母山(LMS)热带云雾林间α (A、B、C)及β (D、E)功能多样性比较。图中不同小写字母表示样地间有显著差异(p < 0.05)。粗实线表示中位数, 虚线表示整体平均值。
Fig. 3 Comparisons in α (A, B, C) and β (D, E) functional diversity am- ong Jianfengling (JFL), Bawangling (BWL) and Limushan (LMS). Different low-case letters indicate significant differences among plots (p < 0.05). Heavy horizontal lines indicate median values and dashed horizontal lines indicate mean values.
图4 尖峰岭(JFL)、霸王岭(BWL)和黎母山(LMS)热带云雾林间α(A、B、C)及β(D、E)谱系多样性比较。图中不同小写字母表示样地间有显著差异(p < 0.05)。粗实线表示中位数,虚线表示整体平均值。
Fig. 4 Comparisons in α (A, B, C) and β (D, E) functional diversity among Jianfengling (JFL), Bawang- ling (BWL) and Limushan (LMS). Different low-case letters indicate significant differences among plots (p < 0.05). Heavy horizontal lines indicate median values and dashed horizontal lines indicate mean values.
性状 Trait | 霸王岭 Bawangling | 黎母山 Limushan | 尖峰岭 Jianfengling | |||||
---|---|---|---|---|---|---|---|---|
K | p | K | p | K | p | |||
植株高度 Plant height (H) | 0.228 | 0.114 | 0.068 | 0.014 | 0.050 | 0.162 | ||
比叶面积 Specific leaf area (SLA) | 0.294 | 0.059 | 0.098 | 0.006 | 0.037 | 0.282 | ||
叶绿素含量 Chlorophyll content (Chl) | 0.223 | 0.042 | 0.225 | 0.001 | 0.053 | 0.073 | ||
叶厚度 Leaf thickness (LTh) | 0.255 | 0.048 | 0.141 | 0.001 | 0.044 | 0.151 | ||
木材密度 Wood density (WD) | 0.358 | 0.004 | 0.095 | 0.014 | 0.023 | 0.505 |
表2 霸王岭、尖峰岭和黎母山热带云雾林植物功能性状的谱系信号
Table 2 Phylogenetic signal in functional traits in tropical cloud forests in Bawangling, Jianfengling and Limushan
性状 Trait | 霸王岭 Bawangling | 黎母山 Limushan | 尖峰岭 Jianfengling | |||||
---|---|---|---|---|---|---|---|---|
K | p | K | p | K | p | |||
植株高度 Plant height (H) | 0.228 | 0.114 | 0.068 | 0.014 | 0.050 | 0.162 | ||
比叶面积 Specific leaf area (SLA) | 0.294 | 0.059 | 0.098 | 0.006 | 0.037 | 0.282 | ||
叶绿素含量 Chlorophyll content (Chl) | 0.223 | 0.042 | 0.225 | 0.001 | 0.053 | 0.073 | ||
叶厚度 Leaf thickness (LTh) | 0.255 | 0.048 | 0.141 | 0.001 | 0.044 | 0.151 | ||
木材密度 Wood density (WD) | 0.358 | 0.004 | 0.095 | 0.014 | 0.023 | 0.505 |
1 |
Blomberg SP, Garland T, Ives AR (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile.Evolution, 57, 717-745.
DOI URL PMID |
2 |
Bray JR, Curtis JT (1957). An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs, 27, 325-349.
DOI URL |
3 | Bu WS (2013). The Relationship Between Biodiversity and Ecosystem Functioning in Natural Tropical Forests of Hainan Island, China. PhD dissertation, Chinese Academy of Forestry, Beijing. 40-59. (in Chinese with English abstract)[卜文圣 (2013). 海南岛热带天然林生物多样性与生态系统功能关系的研究. 博士学位论文, 中国林业科学研究院, 北京. 40-59.] |
4 | Bu WS, Zang RG, Ding Y (2014). Field observed relationship between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest.Acta Oecologica, 55, 1-7. |
5 | Bubb P, May I, Miles L, Sayer J (2004). Cloud Forest Agenda. UNEP-WCMC, Cambridge, UK. |
6 |
Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Sch?b C, Xiao S, Zaitchek B, Anthelme F, Bj?rk RG, Dickinson K, Gavilán R, Kanka R, Maalouf JP, Noroozi J, Parajuli R, Phoenix GK, Reid A, Ridenour W, Rixen C, Wipf S, Zhao L, Brooker RW (2013). Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments.Ecology Letters, 16, 478-486.
DOI URL PMID |
7 |
Cadotte MW, Carscadden K, Nicholas M (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services.Journal of Applied Ecology, 48, 1079-1087.
DOI URL |
8 | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
9 |
Cornwell WK, Schwilk DW, Ackerly DD (2006). A trait-based test for habitat filtering: Convex hull volume.Ecology, 87, 1465-1471.
DOI URL PMID |
10 | Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010). Spatial mismatch and congruence between taxonomic phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world.Ecology Letters, 13, 1030-1040. |
11 |
Faith DP (1992). Conservation evaluation and phylogenetic diversity.Biological Conservation, 61, 1-10.
DOI URL |
12 | Fan J (2015). Spatial and Temporal Pattern of Biodiversity and Its Correlation with Aboveground Biomass in Coniferous and Broadleaved Mixed Forests of Jiaohe, Jilin. PhD dissertation, Beijing Forestry University, Beijing. 73-77. (in Chinese with English abstract)[范娟 (2015). 吉林蛟河针阔混交林生物多样性时空格局及其与地上部分生物量的关系. 博士学位论文, 北京林业大学, 北京. 73-77.] |
13 |
Feng G, Zhang JL, Pei NC, Rao MD, Mi XC, Ren HB, Ma KP (2012). Comparison of phylobetadiversity indices based on community data from Gutianshan forest plot.Chinese Science Bulletin, 57, 623-630.
DOI URL |
14 | Graham HG, Fine PVA (2008). Phylogenetic beta diversity linking ecological and evolutionary processes across space in time.Ecology Letters, 11, 1265-1277. |
15 | Helmus MR, Ives AR (2012). Phylogenetic diversity-area curves.Ecology, 93(suppl. 8), S31-S43. |
16 | Hu YJ, Li YX (1992). Tropical Rain Forest in Hainan Island. Guangdong Higher Education Press, Guangzhou. (in Chinese).[胡玉佳, 李玉杏 (1992). 海南岛热带雨林. 广东高等教育出版社, 广州.] |
17 | Jaccard P (1912). The distribution of the flora in the alpine zone.New Phytologist, 11(2), 37-50. |
18 | Legendre P, Borcard D, Peres-Neto PR (2005). Analyzing β diversity: Partitioning the spatial variation of community composition data.Ecology Monographs, 75, 435-450. |
19 |
Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012). Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics, 14(2), 89-96.
DOI URL |
20 |
Long WX, Schamp BS, Zang RG, Ding Y, Huang YF, Xiang YZ (2015). Community assembly in a tropical cloud forest related to specific leaf area and maximum species height.Journal of Vegetation Science, 26, 513-523.
DOI URL |
21 |
Long WX, Zang RG, Ding Y (2011a). Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests.Flora, 206, 896-903.
DOI URL |
22 |
Long WX, Zang RG, Ding Y (2011a). Community characteristics of tropical montane evergreen forest and tropical montane dwarf forest in Bawangling National Nature Reserve on Hainan Island, South China.Biodiversity Science, 19, 558-566. (in Chinese with English abstract)[龙文兴, 臧润国, 丁易 (2011a). 海南岛霸王岭热带山地常绿林和热带山顶矮林群落特征. 生物多样性, 19, 558-566.]
DOI URL |
23 |
Long WX, Zang RG, Ding Y, Huang YF (2013). Effects of competition and facilitation on species assemblage in two types of tropical cloud forest.PLoS ONE, 8(4), e60252. doi: 10.1371/journal.pone.0060252.
DOI URL |
24 |
Long WX, Zang RG, Ding Y, Yang M, Chen SW (2011b). Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China.Chinese Journal of Plant Ecology, 35, 137-146. (in Chinese with English abstract)[龙文兴, 臧润国, 丁易, 杨敏, 陈少伟 (2011b). 海南岛霸王岭热带云雾林雨季的环境特征. 植物生态学报, 35, 137-146.]
DOI URL |
25 |
Long WX, Zang RG, Schamp BS, Ding Y (2011b). Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest.Oecologia, 167, 1103-1113.
DOI URL PMID |
26 | Ma KP, Liu CR, Liu YM (1995). Biological community diversity measure II. β diversity measure method.Chinese Biodiversity, 3, 38-43. (in Chinese)[马克平, 刘灿然, 刘玉明 (1995). 生物群落多样性的测度方法II. β多样性的测度方法. 生物多样性, 3, 38-43.] |
27 |
Mason NWH, de Bello F (2013). Functional diversity: A tool for answering challenging ecological questions.Journal of Vegetation Science, 24, 777-780.
DOI URL |
28 | Mason NWH, Richardson SJ, Peltzer DA, de Bello F, Wardle DA, Allen RB (2012). Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity.Journal of Ecology, 100, 678-689. |
29 |
Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules.Functional Ecology, 24, 867-876.
DOI URL |
30 |
Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007). Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil.Biodiversity and Conservation, 16, 1761-1784.
DOI URL |
31 |
Qian H, Jin Y (2015). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure.Journal of Plant Ecology, 9, 233-239.
DOI URL |
32 | R Development Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
33 |
Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009). Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history.Molecular Ecology, 18, 4061-4072.
DOI URL PMID |
34 | Schleuter D, Daufresne M, Massol F (2010). A user’s guide to functional diversity indices.Ecological Monographs, 80, 469-484. |
35 |
Spasojevic MJ, Grace JB, Harrison S, Damschen EI (2014). Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients.Journal of Ecology, 102, 447-455.
DOI URL |
36 | Stadtmüller T (1987). Cloud Forest in the Humid Tropics: A Bibliographic Review. United Nations University, Tokyo, Japan. |
37 |
Swenson NG (2013). The assembly of tropical tree communities—The advances and shortcomings of phylogenetic and functional trait analyses.Ecography, 36, 264-276.
DOI URL |
38 | Swenson NG, Anglada-Cordero P, Barone JA (2011). Deterministic tropical tree community turnover: Evidence from patterns of functional β diversity along an elevational gradient.Proceedings of the Royal Society B: Biological Sciences, 278, 877-884. |
39 | Swenson NG, Erickson DL, Mi XC, Bourg NA, Forero- Monta?a J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ (2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical |
40 | tree communities.Ecology, 93(suppl. 8), S112-S125. |
41 |
Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, Ruijven JV, Cardinale BJ (2015). Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies.Functional Ecology, 29, 615-626.
DOI URL |
42 |
Wang W, Rao MD, Chen SW, Zhu DH, Mi XC, Zhang JT (2014). Effects of negative density dependence and habitat filtering on temporal variation in phylogenetic community structure of seedlings in a mid-subtropical forest. Chinese Science Bulletin (Chinese Version), 19, 1844-1850. (in Chinese)[王薇, 饶米德, 陈声文, 朱大海, 米湘成, 张金屯 (2014). 负密度制约和生境过滤对古田山幼苗系统发育多样性时间变化的影响. 科学通报, 19, 1844-1850.]
DOI URL |
43 | Webb CO (2000). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees.The American Naturalist, 156, 145-155. |
44 |
Webb CO, Ackerly D, Kembel S (2008). Phylocom: software for the analysis of phylogenetic community structure and character evolution.Bioinformatics, 24, 2098-2100.
DOI URL PMID |
45 | Wu ZY (1995). Vegetation of China. Science Press, Beijing. (in Chinese)[吴征镒 (1995). 中国植被. 科学出版社, 北京.] |
46 | Xue QN (2015). Functional Diversity Research of Forest Communities in Qiliyu, Shanxi. PhD dissertation, Shanxi Normal University, Linfen, Shanxi. 13-21. (in Chinese with English abstract)[薛倩妮 (2015). 山西七里峪森林群落功能多样性研究. 博士学位论文, 山西师范大学, 山西临汾. 13-21.] |
47 |
Yang J, Lu MM, Cao M, Li J, Lin LX (2014). Phylogenetic and functional alpha and beta diversity in mid-mountain humid evergreen broad-leaved forest. Chinese Science Bulletin (Chinese Version), 24, 2349-2358. (in Chinese)[杨洁, 卢孟孟, 曹敏, 李捷, 林露湘 (2014). 中山湿性常绿阔叶林系统发育和功能性状的α及β多样性. 科学通报, 24, 2349-2358.]
DOI URL |
48 |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014). Three keys to the radiation of angiosperms into freezing environments.Nature, 506, 89-92.
DOI URL PMID |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[5] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[6] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[7] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[10] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[11] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[12] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[13] | 王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史. 海南热带云雾林附生维管植物对宿主的选择性[J]. 植物生态学报, 2022, 46(4): 405-415. |
[14] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[15] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19