植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1459-1470.DOI: 10.17521/cjpe.2024.0018 cstr: 32100.14.cjpe.2024.0018
陶琼1,2, 缪宁1,*(), 岳喜明1,3, 罗建琼1, 薛盼盼1, 王晖4
收稿日期:
2024-01-23
接受日期:
2024-08-23
出版日期:
2024-11-20
发布日期:
2024-08-23
通讯作者:
*缪宁(miaoning@scu.edu.cn)
基金资助:
TAO Qiong1,2, MIAO Ning1,*(), YUE Xi-Ming1,3, LUO Jian-Qiong1, XUE Pan-Pan1, WANG Hui4
Received:
2024-01-23
Accepted:
2024-08-23
Online:
2024-11-20
Published:
2024-08-23
Contact:
*MIAO Ning (miaoning@scu.edu.cn)
Supported by:
摘要:
岷江冷杉(Abies fargesii var. faxoniana)的天然更新是川西亚高山地区天然次生林生态修复的关键, 对其幼苗生物量积累和分配的关键制约因子进行研究有助于深入理解其更新和生长机理。该研究对比了红桦(Betula albosinensis)阔叶林、红桦-岷江冷杉针阔混交林和岷江冷杉原始林3种林型中岷江冷杉幼苗的生物量分配格局和器官间的异速生长关系, 分析了幼苗的生物量分配与地形和微生境因子之间的关系, 并定量分解了各因子对生物量积累影响的贡献度。岷江冷杉原始林中幼苗的根生物量分配比例(30.3%)和茎生物量分配比例(43.3%)显著高于红桦-岷江冷杉针阔混交林和红桦阔叶林, 而叶生物量分配比例(26.4%)显著低于红桦-岷江冷杉针阔混交林(37.4%)和红桦阔叶林(42.3%)。红桦阔叶林中幼苗的根、茎和叶的生物量呈现等速生长关系, 红桦-岷江冷杉针阔混交林和岷江冷杉原始林中幼苗的叶-根间亦呈等速生长关系, 但叶-茎和根-茎间则为异速生长关系。相比于东北、北和西北坡, 西坡生境中的幼苗年平均生物量的积累最高。坡向(20.9%)对幼苗生物量积累和分配的贡献率大于海拔(18.1%), 基质类型(15.8%)、苔藓盖度(11.7%)及厚度(7.7%)和冠层盖度(7.4%)是微生境因子中对岷江冷杉幼苗生物量累积贡献度前四的因子。该研究可为川西亚高山次生林中岷江冷杉更新以及次生林的结构优化提供支撑。
陶琼, 缪宁, 岳喜明, 罗建琼, 薛盼盼, 王晖. 川西亚高山岷江冷杉幼苗生物量积累与分配的影响因子. 植物生态学报, 2024, 48(11): 1459-1470. DOI: 10.17521/cjpe.2024.0018
TAO Qiong, MIAO Ning, YUE Xi-Ming, LUO Jian-Qiong, XUE Pan-Pan, WANG Hui. Influencing factors of biomass accumulation and allocation of Abies fargesii var. faxoniana seedlings in the subalpine region of western Sichuan, China. Chinese Journal of Plant Ecology, 2024, 48(11): 1459-1470. DOI: 10.17521/cjpe.2024.0018
林分类型 Forest type | 样点 Sample site | 样点编号 Site code | 背景 Background | 乔木层 Tree layer | 灌木层 Shrub layer | 草本层 Herb layer | 坡向 Aspect slope | 坡度 Slope (°) | 海拔 Altitude (m) | 样本量 Sample size |
---|---|---|---|---|---|---|---|---|---|---|
BB | SHG | 1 | 盖度 Coverage (%) | 70 | 35 | 85 | NW | 25-28 | 3 396 | 45 |
平均高度 Average height (m) | 13 | 3.5 | 0.4 | |||||||
BA | 272 | 2 | 盖度 Coverage (%) | 60 | 35 | 70 | N | 25-35 | 3 258 | 72 |
平均高度 Average height (m) | 14 | 3.5 | 0.4 | |||||||
AP | 189 | 3 | 盖度 Coverage (%) | 70 | 20 | 45 | N | 35-37 | 3 995 | 44 |
4 | 平均高度 Average height (m) | 12 | 2.0 | 0.3 | 35-40 | 3 793 | 44 | |||
SJB | 5 | 盖度 Coverage (%) | 47 | 25 | 27 | W | 32-35 | 3 958 | 44 | |
6 | 平均高度 Average height (m) | 12 | 2.0 | 0.2 | 27-30 | 3 793 | 45 | |||
295 | 7 | 盖度 Coverage (%) | 60 | 50 | 40 | NW | 30-33 | 3 974 | 43 | |
8 | 平均高度 Average height (m) | 10 | 4.0 | 0.3 | 30-33 | 3 812 | 45 | |||
JBG | 9 | 盖度 Coverage (%) | 65 | 25 | 10 | NE | 35-38 | 4 008 | 45 | |
10 | 平均高度 Average height (m) | 13 | 5.0 | 0.1 | 30-35 | 3 780 | 45 |
表1 川西亚高山样点的林分特征和岷江冷杉幼苗生物量样本量
Table 1 Stand characteristics of sample sites and sample size of Abies fargesii var. faxoniana seedlings biomass in subalpine area of western Sichuan
林分类型 Forest type | 样点 Sample site | 样点编号 Site code | 背景 Background | 乔木层 Tree layer | 灌木层 Shrub layer | 草本层 Herb layer | 坡向 Aspect slope | 坡度 Slope (°) | 海拔 Altitude (m) | 样本量 Sample size |
---|---|---|---|---|---|---|---|---|---|---|
BB | SHG | 1 | 盖度 Coverage (%) | 70 | 35 | 85 | NW | 25-28 | 3 396 | 45 |
平均高度 Average height (m) | 13 | 3.5 | 0.4 | |||||||
BA | 272 | 2 | 盖度 Coverage (%) | 60 | 35 | 70 | N | 25-35 | 3 258 | 72 |
平均高度 Average height (m) | 14 | 3.5 | 0.4 | |||||||
AP | 189 | 3 | 盖度 Coverage (%) | 70 | 20 | 45 | N | 35-37 | 3 995 | 44 |
4 | 平均高度 Average height (m) | 12 | 2.0 | 0.3 | 35-40 | 3 793 | 44 | |||
SJB | 5 | 盖度 Coverage (%) | 47 | 25 | 27 | W | 32-35 | 3 958 | 44 | |
6 | 平均高度 Average height (m) | 12 | 2.0 | 0.2 | 27-30 | 3 793 | 45 | |||
295 | 7 | 盖度 Coverage (%) | 60 | 50 | 40 | NW | 30-33 | 3 974 | 43 | |
8 | 平均高度 Average height (m) | 10 | 4.0 | 0.3 | 30-33 | 3 812 | 45 | |||
JBG | 9 | 盖度 Coverage (%) | 65 | 25 | 10 | NE | 35-38 | 4 008 | 45 | |
10 | 平均高度 Average height (m) | 13 | 5.0 | 0.1 | 30-35 | 3 780 | 45 |
图1 川西亚高山岷江冷杉幼苗样点位置相对关系。E, 东坡; N, 北坡; NE, 东北坡; NW, 西北坡; W, 西坡。1-10为采样样点编号, 详细信息见表1。
Fig. 1 Relative sample site locations of Abies fargesii var. faxoniana seedlings in subalpine area of western Sichuan. E, east slope aspect; N, north slope aspect; NE, northeast slope aspect; NW, northwest slope aspect; W, west slope aspect. 1-10 are sample site codes, detailed information see Table 1.
变量 Variable | 缩写 Abbreviation | 林型 Forest type | 平均值±标准误 Mean ± SE |
---|---|---|---|
郁闭度 Canopy coverage (%) | CC | AP | 46 ± 2c |
BA | 59 ± 2b | ||
BB | 72 ± 1a | ||
灌木盖度 Shrub coverage (%) | SC | AP | 18 ± 1a |
BA | 7 ± 2b | ||
BB | 9 ± 2b | ||
灌木高度 Shrub height (m) | SH | AP | 0.43 ± 0.04b |
BA | 0.88 ± 0.26a | ||
BB | 0.32 ± 0.05b | ||
箭竹盖度 Fargesia coverage (%) | FC | AP | - |
BA | 29 ± 3a | ||
BB | 4 ± 1b | ||
箭竹高度 Fargesia height (m) | FH | AP | - |
BA | 1.38 ± 0.16a | ||
BB | 0.22 ± 0.03b | ||
草本盖度 Herbage coverage (%) | HC | AP | 22 ± 1c |
BA | 34 ± 3a | ||
BB | 27 ± 4b | ||
草本高度 Herbage height (m) | HH | AP | 0.08 ± 0.01b |
BA | 0.23 ± 0.01a | ||
BB | 0.17 ± 0.02a | ||
苔藓盖度 Moss coverage (%) | MC | AP | 88 ± 1a |
BA | 44 ± 4b | ||
BB | 32 ± 5b | ||
苔藓厚度 Moss thicknesses (cm) | MT | AP | 6.62 ± 0.19a |
BA | 2.35 ± 0.16b | ||
BB | 2.32 ± 0.24b | ||
凋落物盖度 Litter coverage (%) | LC | AP | 25 ± 1b |
BA | 48 ± 2a | ||
BB | 22 ± 2b | ||
凋落物厚度 Litter thicknesses (cm) | LT | AP | 1.26 ± 0.07b |
BA | 2.73 ± 0.17a | ||
BB | 2.64 ± 0.29a |
表2 不同林型内岷江冷杉幼苗所处微生境的特征
Table 2 Traits of microhabitats around Abies fargesii var. faxoniana seedlings in three forest types
变量 Variable | 缩写 Abbreviation | 林型 Forest type | 平均值±标准误 Mean ± SE |
---|---|---|---|
郁闭度 Canopy coverage (%) | CC | AP | 46 ± 2c |
BA | 59 ± 2b | ||
BB | 72 ± 1a | ||
灌木盖度 Shrub coverage (%) | SC | AP | 18 ± 1a |
BA | 7 ± 2b | ||
BB | 9 ± 2b | ||
灌木高度 Shrub height (m) | SH | AP | 0.43 ± 0.04b |
BA | 0.88 ± 0.26a | ||
BB | 0.32 ± 0.05b | ||
箭竹盖度 Fargesia coverage (%) | FC | AP | - |
BA | 29 ± 3a | ||
BB | 4 ± 1b | ||
箭竹高度 Fargesia height (m) | FH | AP | - |
BA | 1.38 ± 0.16a | ||
BB | 0.22 ± 0.03b | ||
草本盖度 Herbage coverage (%) | HC | AP | 22 ± 1c |
BA | 34 ± 3a | ||
BB | 27 ± 4b | ||
草本高度 Herbage height (m) | HH | AP | 0.08 ± 0.01b |
BA | 0.23 ± 0.01a | ||
BB | 0.17 ± 0.02a | ||
苔藓盖度 Moss coverage (%) | MC | AP | 88 ± 1a |
BA | 44 ± 4b | ||
BB | 32 ± 5b | ||
苔藓厚度 Moss thicknesses (cm) | MT | AP | 6.62 ± 0.19a |
BA | 2.35 ± 0.16b | ||
BB | 2.32 ± 0.24b | ||
凋落物盖度 Litter coverage (%) | LC | AP | 25 ± 1b |
BA | 48 ± 2a | ||
BB | 22 ± 2b | ||
凋落物厚度 Litter thicknesses (cm) | LT | AP | 1.26 ± 0.07b |
BA | 2.73 ± 0.17a | ||
BB | 2.64 ± 0.29a |
图2 不同林型岷江冷杉幼苗生物量年增量(A)和器官生物量比例(B) (平均值±标准误)。不同大写字母表示不同器官间差异显著(p < 0.05), 不同小写字母表示不同林型间差异显著(p < 0.05)。AP, 岷江冷杉原始林; BA, 红桦-岷江冷杉针阔混交林; BB, 红桦阔叶林。
Fig. 2 Annual biomass increment (A) and organ biomass fraction (B) of Abies fargesii var. faxoniana seedlings in different forest types (mean ± SE). Different uppercase letters indicate significant differences between organs (p < 0.05), different lowercase letters indicate significant differences between the forest types (p < 0.05). AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
图3 不同林型岷江冷杉幼苗的总生物量与年龄的关系。所有回归模型均在α = 0.001水平上显著。AP, 岷江冷杉原始林; BA, 红桦-岷江冷杉针阔混交林; BB, 红桦阔叶林。
Fig. 3 Relationships between total seedling biomass and seedling age of Abies fargesii var. faxoniana in different forest types. All regression models were significant at the α = 0.001 level. AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
图4 不同林型岷江冷杉幼苗各器官间(A, 叶-根; B, 茎-根; C, 叶-茎)生物量的异速生长方程。所有回归模型均在α = 0.001水平上显著。p表示斜率与1.0的差异显著性。AP, 岷江冷杉原始林; BA, 红桦-岷江冷杉针阔混交林; BB, 红桦阔叶林。
Fig. 4 Allometric relationships for different dimensions (A, leaf-root; B, stem-root; C, leaf-stem) of Abies fargesii var. faxoniana seedlings in different forest types. All regression models were significant at the α = 0.001 level. p indicates a significant difference in slope with 1.0. AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
图5 岷江冷杉幼苗生物量与各生境因子的冗余分析(RDA) (A)和单个因子独立贡献率(B)。该模型在α = 0.001水平上显著。AL, 海拔; AMI, 平均年生物量增量; AS, 坡向; CC, 冠层盖度; FC, 箭竹盖度; FH, 箭竹高度; HC, 草本盖度; HH, 草本高度; LC, 凋落物盖度; LMF, 叶生物量分配比例; LT, 凋落物厚度; MC, 苔藓盖度; MT, 苔藓厚度; RMF, 根生物量分配比例; SC, 灌木盖度; SH, 灌木高度; SMF, 茎生物量分配比例; SU, 基质类型。log, 倒木; rock, 岩石; soil, 土壤; stump, 树桩。N, 北坡; NE, 东北坡; NW, 西北坡; W, 西坡。
Fig. 5 Redundancy analysis (RDA) diagram of all factors and biomass of Abies fargesii var. faxoniana seedlings (A) and the relative importance of individual factors (B). The model was significant at the α = 0.001 level. AL, altitude; AMI, annual biomass increment; AS, aspect slope; CC, canopy coverage; FC, Fargesia coverage; FH, Fargesia height; HC, herbage overage; HH, herbage height; LC, litter coverage; LMF, leaf biomass fraction; LT, litter thickness; MC, moss coverage; MT, moss thickness; RMF, root biomass fraction; SC, shrub coverage; SH, shrub height; SMF, stem biomass fraction; SU, substrate type. N, north slope aspect; NE, northeast slope aspect; NW, northwest slope aspect; W, west slope aspect.
林分类型 Forest type | 响应变量 Response variable | 解释变量 Explanatory variable | 参数 Estimate | 标准误 SE | t | p |
---|---|---|---|---|---|---|
岷江冷杉原始林 Abies fargesii var. faxoniana primary forest | RMF | AS (NW) | 0.44 | 0.15 | 2.93 | 0.004** |
SU (soil) | 0.72 | 0.23 | 3.06 | 0.002** | ||
SH | -0.17 | 0.08 | -2.06 | 0.041* | ||
HC | -0.14 | 0.07 | -2.01 | 0.045* | ||
MT | 0.25 | 0.08 | 3.22 | 0.001** | ||
SMF | AS (W) | 0.51 | 0.14 | 3.52 | <0.001*** | |
LMF | AS (NW) | -0.47 | 0.17 | -2.68 | 0.030* | |
AS (W) | -0.58 | 0.18 | -3.12 | 0.013* | ||
SU (rock) | -0.90 | 0.35 | -2.54 | 0.012* | ||
SU (soil) | -0.64 | 0.23 | -2.80 | 0.005** | ||
MT | -0.19 | 0.07 | -2.75 | 0.008** | ||
AMI | AS (W) | 0.67 | 0.20 | 3.33 | 0.009** | |
SH | 0.20 | 0.08 | 2.51 | 0.012* | ||
红桦-岷江冷杉针阔混交林 Betula. albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest | RMF | MC | 0.49 | 0.15 | 3.27 | 0.002** |
MT | -0.65 | 0.31 | -2.06 | 0.044* | ||
SMF | ns | |||||
LMF | ns | |||||
AMI | ns | |||||
红桦阔叶林 Betula albosinensis broadleaf forest | RMF | HH | 0.34 | 0.14 | 2.48 | 0.018* |
SMF | ns | |||||
LMF | HC | -0.35 | 0.15 | -2.24 | 0.031* | |
AMI | CC | -0.35 | 0.15 | -2.40 | 0.021* | |
FC | 1.59 | 0.49 | 3.24 | 0.002** | ||
HH | -0.29 | 0.12 | -2.41 | 0.020* |
表3 不同林分中岷江冷杉幼苗生物量与各生境因子的关系
Table 3 Relationship between Abies fargesii var. faxoniana seedling biomass and habitat factors in different forest types
林分类型 Forest type | 响应变量 Response variable | 解释变量 Explanatory variable | 参数 Estimate | 标准误 SE | t | p |
---|---|---|---|---|---|---|
岷江冷杉原始林 Abies fargesii var. faxoniana primary forest | RMF | AS (NW) | 0.44 | 0.15 | 2.93 | 0.004** |
SU (soil) | 0.72 | 0.23 | 3.06 | 0.002** | ||
SH | -0.17 | 0.08 | -2.06 | 0.041* | ||
HC | -0.14 | 0.07 | -2.01 | 0.045* | ||
MT | 0.25 | 0.08 | 3.22 | 0.001** | ||
SMF | AS (W) | 0.51 | 0.14 | 3.52 | <0.001*** | |
LMF | AS (NW) | -0.47 | 0.17 | -2.68 | 0.030* | |
AS (W) | -0.58 | 0.18 | -3.12 | 0.013* | ||
SU (rock) | -0.90 | 0.35 | -2.54 | 0.012* | ||
SU (soil) | -0.64 | 0.23 | -2.80 | 0.005** | ||
MT | -0.19 | 0.07 | -2.75 | 0.008** | ||
AMI | AS (W) | 0.67 | 0.20 | 3.33 | 0.009** | |
SH | 0.20 | 0.08 | 2.51 | 0.012* | ||
红桦-岷江冷杉针阔混交林 Betula. albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest | RMF | MC | 0.49 | 0.15 | 3.27 | 0.002** |
MT | -0.65 | 0.31 | -2.06 | 0.044* | ||
SMF | ns | |||||
LMF | ns | |||||
AMI | ns | |||||
红桦阔叶林 Betula albosinensis broadleaf forest | RMF | HH | 0.34 | 0.14 | 2.48 | 0.018* |
SMF | ns | |||||
LMF | HC | -0.35 | 0.15 | -2.24 | 0.031* | |
AMI | CC | -0.35 | 0.15 | -2.40 | 0.021* | |
FC | 1.59 | 0.49 | 3.24 | 0.002** | ||
HH | -0.29 | 0.12 | -2.41 | 0.020* |
[1] |
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718-725.
DOI |
[2] | Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009). Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography, 18, 460-472. |
[3] | Beatty SW, Sholes ODV (1988). Leaf litter effect on plant species composition of deciduous forest treefall pits. Canadian Journal of Forest Research, 18, 553-559. |
[4] | Bernoulli M, Körner C (1999). Dry matter allocation in treeline trees. Phyton-Annales Rei Botanicae, 39, 7-12. |
[5] | Coll L, Ameztegui A (2019). Elevation modulates the phenotypic responses to light of four co-occurring Pyrenean forest tree species. Annals of Forest Science, 76, 41. DOI: 10.1007/s13595-019-0831-1. |
[6] |
Freestone AL (2006). Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment. Ecology, 87, 2728-2735.
PMID |
[7] | Hicks Jr RR, Frank Jr PS (1984). Relationship of aspect to soil nutrients, species importance and biomass in a forested watershed in West Virginia. Forest Ecology and Management, 8, 281-291. |
[8] | Holtmeier FK, Broll G (1992). The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado front range, U.S.A. Arctic and Alpine Research, 24, 216-228. |
[9] | Hu JL, Yang WQ, Zhang J, Deng RJ (2009). Characteristics of biomass and carbon stock of fir and birch fine roots in subalpine forest of western Sichuan, China. Chinese Journal of Applied and Environmental Biology, 15, 313-317. |
[胡建利, 杨万勤, 张健, 邓仁菊 (2009). 川西亚高山冷杉和白桦细根生物量与碳储量特征. 应用与环境生物学报, 15, 313-317.] | |
[10] |
Inman-Narahari F, Ostertag R, Asner GP, Cordell S, Hubbell SP, Sack L (2014). Trade-offs in seedling growth and survival within and across tropical forest microhabitats. Ecology and Evolution, 4, 3755-3767.
DOI PMID |
[11] | Jeschke M, Kiehl K (2008). Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands. Flora, 203, 557-566. |
[12] | Körner C (2012). Treelines will be understood once the functional difference between a tree and a shrub is. Ambio, 41, 197-206. |
[13] | Lacointe A (2000). Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Annals of Forest Science, 57, 521-533. |
[14] | Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788. |
[15] | Li MH, Yang J (2004). Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, 61, 319-325. |
[16] | Li MH, Yang J, Kräuchi N (2003). Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Canadian Journal of Forest Research, 33, 653-662. |
[17] |
Liu S, Liao JX, Xiao C, Fan XH (2016). Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain. Chinese Journal of Plant Ecology, 40, 711-722.
DOI |
[刘帅, 廖嘉星, 肖翠, 范秀华 (2016). 长白山次生针阔混交林乔木幼苗存活的影响因素分析. 植物生态学报, 40, 711-722.]
DOI |
|
[18] | Liu S, Luo D, Yang HG, Shi ZM, Liu QL, Zhang L, Kang Y, Ma Q (2018). Fine root biomass, productivity and turnover of Abies faxoniana primary forest in subalpine region of western Sichuan, China. Chinese Journal of Ecology, 37, 987-993. |
[刘顺, 罗达, 杨洪国, 史作民, 刘千里, 张利, 康英, 马青 (2018). 川西亚高山岷江冷杉原始林细根生物量、生产力和周转. 生态学杂志, 37, 987-993.] | |
[19] | Ma JM, Liu SR, Liu XL (2010). Root biomass in the restoration process of subalpine dark coniferous forests in western Sichuan, China. Journal of Guangxi Normal University (Natural Science Edition), 28(3), 56-60. |
[马姜明, 刘世荣, 刘兴良 (2010). 川西亚高山暗针叶林恢复过程中根系生物量研究. 广西师范大学学报(自然科学版), 28(3), 56-60.] | |
[20] |
Ma JM, Liu SR, Shi ZM, Zhang YD, Miao N (2009). Natural regeneration of Abies faxoniana along restoration gradients of subalpine dark coniferous forest in western Sichuan, China. Chinese Journal of Plant Ecology, 33, 646-657.
DOI |
[马姜明, 刘世荣, 史作民, 张远东, 缪宁 (2009). 川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子. 植物生态学报, 33, 646-657.]
DOI |
|
[21] | Mori A, Mizumachi E, Osono T, Doi Y(2004). Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. Forest Ecology and Management, 196, 287-297. |
[22] | Narukawa Y, Iida S, Tanouchi H, Abe S, Yamamoto SI (2003). State of fallen logs and the occurrence of conifer seedlings and saplings in boreal and subalpine old-growth forests in Japan. Ecological Research, 18, 267-277. |
[23] | Narukawa Y, Yamamoto S (2003). Development of conifer seedlings roots on soil and fallen logs in boreal and subalpine coniferous forests of Japan. Forest Ecology and Management, 175, 131-139. |
[24] | Pang XY, Yuan XJ, Wang A, Li MH, Liu XL, Pan HL, Yu FH, Lei JP (2018). Effects of simulated warming and functional group removal on survival and growth of Abies faxoniana seedlings. Chinese Journal of Applied Ecology, 29, 687-695. |
[庞晓瑜, 袁秀锦, 王奥, 李迈和, 刘兴良, 潘红丽, 于飞海, 雷静品 (2018). 模拟增温和功能群去除对岷江冷杉幼苗存活和生长的影响. 应用生态学报, 29, 687-695.]
DOI |
|
[25] | Parker WC, Watson SR, Cairns DW (1997). The role of hair-cap mosses (Polytrichum spp.) in natural regeneration of white spruce (Picea glauca (Moench) Voss). Forest Ecology and Management, 92, 19-28. |
[26] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[27] | Poorter H, Nagel O (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595-607. |
[28] |
Reich PB, Luo YJ, Bradford JB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726.
DOI PMID |
[29] | Resler LM, Butler DR, Malanson GP (2013). Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Physical Geography, 26, 112-125. |
[30] | Šamonil P, Daněk P, Baldrian P, Tláskal V, Tejnecký V, Drábek O (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma, 376, 114499. DOI: 10.1016/j.geoderma.2020.114499. |
[31] | Shao JY, Du JH, Li SF, Huang YX, Liang WN, Liao JQ (2019). Tree seedling distribution, regeneration mechanism and response to climate change in alpine treeline ecotone. Chinese Journal of Applied Ecology, 30, 2854-2864. |
[邵佳怡, 杜建会, 李升发, 黄一鑫, 梁伟诺, 廖家强 (2019). 高山林线生态交错区木本植物幼苗分布特征、更新机制及其对气候变化的响应. 应用生态学报, 30, 2854-2864.]
DOI |
|
[32] | Simon A, Gratzer G, Sieghardt M (2011). The influence of windthrow microsites on tree regeneration and establishment in an old growth mountain forest. Forest Ecology and Management, 262, 1289-1297. |
[33] | Taylor AH, Qin ZS (1988). Regeneration patterns in old-growth Abies-Betula forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology, 76, 1204-1218. |
[34] | Taylor AH, Shi W, Jun Z, Ping L, Jin M, Huang J (2006). Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. Forest Ecology and Management, 223, 303-317. |
[35] |
Thakur TK, Swamy SL, Bijalwan A, Dobriyal MJR (2019). Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. Journal of Forestry Research, 30, 157-170.
DOI |
[36] | von Arx G, Graf Pannatier E, Thimonier A, Rebetez M (2013). Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. Journal of Ecology, 101, 1201-1213. |
[37] | Wang QT, Zhao CY, Gao CC, Xie HH, Qiao Y, Gao YF, Yuan LM, Wang WB, Ge LJ, Zhang GD (2017). Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients. Forest Ecology and Management, 384, 54-64. |
[38] | Wang Z, Wang D, Liu Q, Xing X, Liu B, Jin S, Tigabu M (2022). Meta-analysis of effects of forest litter on seedling establishment. Forests, 13, 644. DOI: 10.3390/f13050644. |
[39] | Warton DI, Duursma RA, Falster DS, Taskinen S (2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259. |
[40] | Xian JR, Hu TX, Zhang YB, Wang KY (2007). Effects of forest canopy gap on Abies faxoniana seedling’s biomass and its allocation in subalpine coniferous forest of west Sichuan. Chinese Journal of Applied Ecology, 18, 721-727. |
[鲜骏仁, 胡庭兴, 张远彬, 王开运 (2007). 林窗对川西亚高山岷江冷杉幼苗生物量及其分配格局的影响. 应用生态学报, 18, 721-727.] | |
[41] | Xu ZF, Hu TX, Zhang YB, Xian JR, Wang KY (2008). Responses of phenology and growth of Betula utilis and Abies faxoniana in subalpine timberline ecotone to simulated global warming, western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1061-1071. |
[徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运 (2008). 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应. 植物生态学报, 32, 1061-1071.]
DOI |
|
[42] | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings. Acta Ecologica Sinica, 30, 5994-6000. |
[杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
[43] | Yin HJ, Lai T, Cheng XY, Jiang XM, Liu Q (2008). Warming effects on growth and physiology of seedlings of Betula albosinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1072-1083. |
[尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆 (2008). 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 32, 1072-1083.] | |
[44] | Zamfir M (2000). Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos, 88, 603-611. |
[45] | Zhang XS, Zhou CN, Lu J (2022). Influence of topography, soil properties and plant community on the biomass of Abies georgei var. smithii seedlings in Southeast Tibet. Journal of Mountain Science, 19, 2664-2677. |
[46] | Zhang YD, Liu YC, Gu FX, Guo MM, Miao N, Liu SR (2019). Litter composition and its dynamic in five main forest types in subalpine areas of west Sichuan, China. Acta Ecologica Sinica, 39, 502-508. |
[张远东, 刘彦春, 顾峰雪, 郭明明, 缪宁, 刘世荣 (2019). 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 39, 502-508.] | |
[47] | Zhang YD, Zhao CM, Liu SR (2005a). The influence factors of sub-alpine forest restoration in Miyaluo, west Sichuan. Scieniia Silvae Sinicae, 41(4), 189-193. |
[张远东, 赵常明, 刘世荣 (2005a). 川西米亚罗林区森林恢复的影响因子分析. 林业科学, 41(4), 189-193.] | |
[48] | Zhang YD, Liu SR, Zhao CM (2005b). Spatial pattern of subalpine forest restoration in west Sichuan. Chinese Journal of Applied Ecology, 16, 1706-1710. |
[张远东, 刘世荣, 赵常明 (2005b). 川西亚高山森林恢复的空间格局分析. 应用生态学报, 16, 1706-1710.] |
[1] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[6] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[7] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[8] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[9] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[10] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[11] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[12] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[13] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[14] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[15] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19