植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 9-16.DOI: 10.3724/SP.J.1258.2011.00009
收稿日期:
2010-01-20
接受日期:
2010-09-03
出版日期:
2011-01-20
发布日期:
2011-01-24
通讯作者:
黄建辉
作者简介:
*E-mail: jhhuang@ibcas.ac.cn
CHEN Jin1,2, LI Yang1, HUANG Jian-Hui1,*()
Received:
2010-01-20
Accepted:
2010-09-03
Online:
2011-01-20
Published:
2011-01-24
Contact:
HUANG Jian-Hui
摘要:
混合凋落物的研究对预测生态系统群落水平的分解以及相应的养分释放和进一步的循环等生态学过程具有重要意义。该研究使用网袋法, 对克氏针茅(Stipa krylovii)、糙叶黄芪(Astragalus scaberrimus)、星毛委陵菜(Potentilla acaulis)和羊草(Leymus chinensis) 4种凋落物单种及其混合物的分解速率及分解过程中的养分动态进行了野外实验研究, 以探讨凋落物多样性对内蒙古典型草原生态系统分解速率和过程的影响。通过对凋落物分解速率和养分含量变化历时1年的实际测定, 得到下列研究结果(1)分解341天后, 单种凋落物的剩余重量与初始氮(N)含量呈显著负相关关系(p < 0.001, r = - 0.979)。混合凋落物中, 糙叶黄芪-星毛委陵菜组合剩余重量的实测值比期望值高7.5%, 表明凋落物混合具有显著的正效应, 但在其他几种组合中没有发现显著的凋落物混合效应; (2)在分解初期的N释放阶段, 克氏针茅-糙叶黄芪和克氏针茅-羊草组合的实测N剩余率分别比期望值低4.7%和10.0%, 表明混合凋落物对初期N元素释放具有显著的负效应。不同凋落物混合组合的磷(P)释放或累积在不同分解时期都得到了一定程度的促进, 尤其是星毛委陵菜-克氏针茅、克氏针茅-羊草和克氏针茅-糙叶黄芪组合, 它们在分解前期、中期和后期, 实测P剩余率与期望值的差异分别为31.1%、23.1%和21.8%。研究结果表明, 在内蒙古典型草原生态系统, 多数混合凋落物对分解速率不产生显著的混合效应; 相反, 大多数混合凋落物对分解过程中的养分动态, 尤其是P元素, 具有显著的混合效应, 而混合效应的方向(正或负)可能是十分复杂的。
陈瑾, 李扬, 黄建辉. 内蒙古典型草原4种优势植物凋落物的混合分解研究. 植物生态学报, 2011, 35(1): 9-16. DOI: 10.3724/SP.J.1258.2011.00009
CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe. Chinese Journal of Plant Ecology, 2011, 35(1): 9-16. DOI: 10.3724/SP.J.1258.2011.00009
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P | N/P |
---|---|---|---|---|---|---|
克氏针茅 Stipa krylovii | 40.75 ± 0.62a | 0.561 ± 0.035a | 0.096 ± 0.003a | 72.12 ± 4.29a | 425.75 ± 16.12a | 5.957 ± 0.285a |
糙叶黄芪 Astragalus scaberrimus | 43.82 ± 0.58b | 2.205 ± 0.023b | 0.159 ± 0.001b | 19.82 ± 0.20b | 275.20 ± 3.73b | 13.884 ± 0.074b |
星毛委陵菜 Potentila acaulis | 42.17 ± 0.51ac | 1.114 ± 0.020c | 0.164 ± 0.001b | 37.58 ± 1.01c | 256.78 ± 4.14b | 6.843 ± 0.115c |
羊草 Leymus chinensis | 43.21 ± 0.30bc | 0.547 ± 0.031a | 0.096 ± 0.006a | 76.00 ± 5.57a | 454.79 ± 27.68a | 6.005 ± 0.097a |
表1 单种凋落物的初始化学组成
Table 1 Initial chemical composition of single litter
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P | N/P |
---|---|---|---|---|---|---|
克氏针茅 Stipa krylovii | 40.75 ± 0.62a | 0.561 ± 0.035a | 0.096 ± 0.003a | 72.12 ± 4.29a | 425.75 ± 16.12a | 5.957 ± 0.285a |
糙叶黄芪 Astragalus scaberrimus | 43.82 ± 0.58b | 2.205 ± 0.023b | 0.159 ± 0.001b | 19.82 ± 0.20b | 275.20 ± 3.73b | 13.884 ± 0.074b |
星毛委陵菜 Potentila acaulis | 42.17 ± 0.51ac | 1.114 ± 0.020c | 0.164 ± 0.001b | 37.58 ± 1.01c | 256.78 ± 4.14b | 6.843 ± 0.115c |
羊草 Leymus chinensis | 43.21 ± 0.30bc | 0.547 ± 0.031a | 0.096 ± 0.006a | 76.00 ± 5.57a | 454.79 ± 27.68a | 6.005 ± 0.097a |
图1 单一凋落物在分解过程中质量和养分含量的变化。多重均值比较采用LSD法; 不同字母表示同一取样的种间差异显著(p < 0.05)。
Fig. 1 Single litter decomposition rates and nutrient dynamics during decomposition. LSD method was used in multiple comparisons. Different letters beside the lines mean significant difference at p < 0.05 among species of a specific sampling time.
凋落物混合组合 Litter mixing combinations | 重量剩余率 Mass remaining percentage (%) | 混合效应 Mixing effects | |
---|---|---|---|
实测值 Observed value | 期望值 Expected value | ||
克氏针茅-糙叶黄芪(Sk-As) Stipa krylovii + Astragalus scaberrimus | 66.0 ± 0.7 | 65.9 ± 0.9 | ns |
糙叶黄芪-星毛委陵菜(As-Pa) A. scaberrimus + Potentila acaulis | 67.4 ± 1.1*** | 59.9 ± 0.5 | – |
星毛委陵菜-克氏针茅(Pa-Sk) P. acaulis + S. krylovii | 71.4 ± 1.5 | 73.8 ± 0.7 | ns |
克氏针茅-羊草(Sk-Lc) S. krylovii + Leymus chinensis | 81.6 ± 1.2 | 79.0 ± 0.4 | ns |
克氏针茅-糙叶黄芪-星毛委陵菜(Sk-As-Pa) S. krylovii + A. scaberrimus + P. acaulis | 68.2 ± 0.6*** | 66.5 ± 0.6 | – |
表2 混合凋落物的实测重量剩余率(%)和期望重量剩余率(%) (平均值±标准误差, n = 5)
Table 2 Observed and expected mass remaining percentage (%) of different litter mixing combinations (mean ± SE, n = 5)
凋落物混合组合 Litter mixing combinations | 重量剩余率 Mass remaining percentage (%) | 混合效应 Mixing effects | |
---|---|---|---|
实测值 Observed value | 期望值 Expected value | ||
克氏针茅-糙叶黄芪(Sk-As) Stipa krylovii + Astragalus scaberrimus | 66.0 ± 0.7 | 65.9 ± 0.9 | ns |
糙叶黄芪-星毛委陵菜(As-Pa) A. scaberrimus + Potentila acaulis | 67.4 ± 1.1*** | 59.9 ± 0.5 | – |
星毛委陵菜-克氏针茅(Pa-Sk) P. acaulis + S. krylovii | 71.4 ± 1.5 | 73.8 ± 0.7 | ns |
克氏针茅-羊草(Sk-Lc) S. krylovii + Leymus chinensis | 81.6 ± 1.2 | 79.0 ± 0.4 | ns |
克氏针茅-糙叶黄芪-星毛委陵菜(Sk-As-Pa) S. krylovii + A. scaberrimus + P. acaulis | 68.2 ± 0.6*** | 66.5 ± 0.6 | – |
图2 混合凋落物N的实测剩余率与期望剩余率; 星号表示实测值与期望值差异显著(*, p < 0.05, ***, p < 0.001)。Sk-As, 克氏针茅-糙叶黄芪; As-Pa, 糙叶黄芪-星毛委陵菜; Pa-Sk, 星毛委陵菜-克氏针茅; Sk-Lc, 克氏针茅-羊草; Sk-As-Pa, 克氏针茅-糙叶黄芪-星毛委陵菜。
Fig. 2 Observed and expected nitrogen remaining percentage in litter mixtures. Asterisks denote significant differences between the observed and expected values (*, p < 0.05, ***, p < 0.001). Sk-As, Stipa krylovii + Astragalus scaberrimus; As-Pa, Astragalus scaberrimus + Potentila acaulis; Pa-Sk, Potentila acaulis + Stipa krylovii; Sk-Lc, Stipa krylovii + Leymus chinensis; Sk-As-Pa, Stipa krylovii + Astragalus scaberrimus + Potentila acaulis.
图3 混合凋落物P的实测剩余率与期望剩余率。星号表示实测值与期望值差异显著(*, p < 0.05, **, p < 0.01, ***, p < 0.001)。Sk-As、As-Pa、Pa-Sk、Sk-Lc、Sk-As-Pa, 同图2。
Fig. 3 Observed and expected phosphorus remaining percentage in litter mixtures. Asterisks denote significant differences between the observed and expected values (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Sk-As, As-Pa, Pa-Sk, Sk-Lc, Sk-As-Pa, see Fig. 2.
[1] | Aerts R, de Caluwe H (1997). Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology, 78, 244-260. |
[2] |
Bardgett RD, Shine A (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31, 317-321.
DOI URL |
[3] | Berg B, McClaugherty C (1989). Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Canadian Journal of Botany, 67, 1148-1156. |
[4] | Blair JM, Parmelee RW, Beare MH (1990). Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter. Ecology, 71, 1976-1985. |
[5] | Chen ZZ (陈佐忠)) (1988). Overview of topography and climate in the Xilin River Basin of Inner Mongolia. Research on Grassland Ecosystem (草原生态系统研究), 3, 13-22. (in Chinese with English abstract) |
[6] | Dong M (董鸣), Wang YF (王义凤), Kong FZ (孔繁志), Jiang GM (蒋高明), Zhang ZB (张知彬) (1997). Survey, Observation and Analysis of Terrestrial Biocommunities (陆地生物群落调查观测与分析). Standards Press of China, Beijing. 152-154. (in Chinese) |
[7] | Gartner TB, Cardon ZG (2004). Decomposition dynamics in mixed-species leaf litter. Oikos, 104, 230-246. |
[8] | Hättenschwiler S, Tiunov AV, Scheu S (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution and Systematics, 36, 191-218. |
[9] | Hansen RA (1999). Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant and Soil, 209, 37-45. |
[10] |
Hansen RA, Coleman DC (1998). Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology, 9, 17-23.
DOI URL |
[11] |
Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90, 357-371.
DOI URL |
[12] | Liao LP (廖利平), Ma YQ (马越强), Wang SL (汪思龙), Gao H (高洪), Yu XJ (于小军) (2000). Decomposition of leaf litter of Chinese fir and in mixture with major associated broad-leaved plantation species. Acta Phytoecologica Sinica (植物生态学报), 24, 27-33. (in Chinese with English abstract) |
[13] |
Liu P, Sun OJ, Huang J, Li L, Han X (2007). Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biology and Fertility of Soils, 44, 211-216.
DOI URL |
[14] | Liu P, Huang J, Han X, Sun OJ (2009). Litter decomposition in semi-arid grassland of Inner Mongolia, China. Rangeland Ecology and Management, 62, 305-313. |
[15] |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[16] | Sanchez FG (2001). Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management, 152, 85-96. |
[17] | Swift MJ, Heal OW, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. University of Chicago Press, Chicago. 509. |
[18] | Wang QB (王其兵), Li LH (李凌浩), Bai YF (白永飞), Xing XR (邢雪荣) (2000). Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica (植物生态学报), 24, 674-679. (in Chinese with English abstract) |
[19] |
Wardle DA, Bonner KI, Nicholson KS (1997). Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247-258.
DOI URL |
[20] |
Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003). Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35, 827-835.
DOI URL |
[21] |
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003). Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84, 2042-2050.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[3] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[6] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[7] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[8] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[9] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[10] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[11] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[12] | 蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. |
[13] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[14] | 王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普. 草地利用方式对土壤呼吸和凋落物分解的影响[J]. 植物生态学报, 2015, 39(3): 239-248. |
[15] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19