植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1209-1218.DOI: 10.3724/SP.J.1258.2011.01209
• 研究论文 • 下一篇
收稿日期:
2011-09-07
接受日期:
2011-10-25
出版日期:
2011-09-07
发布日期:
2011-12-15
通讯作者:
周国逸
作者简介:
*(E-mail:gyzhou@scib.ac.cn)
LIU Xiao-Dong1,2, QIAO Yu-Na3, ZHOU Guo-Yi1,*()
Received:
2011-09-07
Accepted:
2011-10-25
Online:
2011-09-07
Published:
2011-12-15
Contact:
ZHOU Guo-Yi
摘要:
如何基于常规测定因子评估森林在土壤水分保持方面的生态效益, 并建立森林固碳效益与水文效益的联系等科学问题, 在综合评估森林生态效益方面有着重要意义。该文以南亚热带地区的3种不同演替阶段的森林生态系统(人工恢复的马尾松针叶林(Pinus massoniana coniferous forest, PF)、马尾松针阔叶混交林(mixed Pinus massoniana-broad-leaved forest, PBF)和季风常绿阔叶林(monsoon evergreen broad-leaved forest, MBF))为研究对象, 通过分析其土壤有机质及土壤水分状况在林内及林型间的分布格局差异, 探讨土壤有机质对土壤水分保持的控制作用。结果表明: 由PF至地带性顶级群落MBF的3种林分虽然相距很近且有关环境因子一致, 但0-30 cm土层的土壤含水量差异显著, MBF的最高, PBF其次; 3种林型林内土壤水分分布格局迥异, MBF的土壤水分随土层加深而递减的趋势明显, PBF土壤各层水分较为均一, PF则土壤表层水分含量较低, 与土壤有机质的状况一致。土壤水分特征曲线显示, 0-40 cm土层在相同基质吸力条件下的土壤水分含量: MBF > PBF > PF, MBF的保水性最好。进一步分析发现, 土壤孔隙度对土壤含水量的影响最大, 饱和含水量、土壤有机质次之, 同时, 考虑到土壤孔隙度和土壤饱和含水量对土壤有机质的高度依赖性, 我们认为土壤有机质控制着土壤含水量及其有效性( p= 0.014)。作为常规测定指标的土壤有机质, 不仅是森林固碳效益的关键指标, 而且可用来量度土壤水分保持及其有效性, 可以作为评价森林生态系统服务功能的一个综合指标。
刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用. 植物生态学报, 2011, 35(12): 1209-1218. DOI: 10.3724/SP.J.1258.2011.01209
LIU Xiao-Dong, QIAO Yu-Na, ZHOU Guo-Yi. Controlling action of soil organic matter on soil moisture retention and its availability. Chinese Journal of Plant Ecology, 2011, 35(12): 1209-1218. DOI: 10.3724/SP.J.1258.2011.01209
森林类型 Forest type | 坡度 Slope gradient | 坡向 Slope aspect | 海拔 Altitude (m) | 林龄 Forest age (a) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
马尾松针叶林 Pinus massonianaconiferous forest (PF) | 25°-30° | 西南 Southwest | 200-300 | 50-60 | ||||||||
马尾松针阔叶混交林 Mixed Pinus massoniana-broad-leaved forest (PBF) | 28°-35° | 西南 Southwest | 220-300 | 70-80 | ||||||||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest (MBF) | 25°-33° | 东北 Northeast | 220-300 | 400 |
表1 试验样地概况
Table 1 General information of the experimental sites
森林类型 Forest type | 坡度 Slope gradient | 坡向 Slope aspect | 海拔 Altitude (m) | 林龄 Forest age (a) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
马尾松针叶林 Pinus massonianaconiferous forest (PF) | 25°-30° | 西南 Southwest | 200-300 | 50-60 | ||||||||
马尾松针阔叶混交林 Mixed Pinus massoniana-broad-leaved forest (PBF) | 28°-35° | 西南 Southwest | 220-300 | 70-80 | ||||||||
季风常绿阔叶林 Monsoon evergreen broad-leaved forest (MBF) | 25°-33° | 东北 Northeast | 220-300 | 400 |
图1 3种林型不同土层土壤体积含水量(平均值±标准偏差)。同一土层具有不同字母的差异显著(p < 0.05)。MBF, 季风常绿阔叶林; PBF, 马尾松针阔叶混交林; PF, 马尾松针叶林。
Fig. 1 Soil volumetric water contents of different soil layers in the three forest types (mean ± SD). Different letters indicate significant differences at p < 0.05 level in the same soil layer. MBF, monsoon evergreen broad-leaved forest; PBF, mixed Pinus massoniana-broad-leaved forest; PF, Pinus massoniana coniferous forest.
林型 Forest type | 土壤深度 Soil depth (cm) | 数学模型1) Mathematical model1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 0-10 | θ= 25.081s-0.172 | 0.992** |
10-20 | θ = 23.283s-0.161 | 0.986** | |
20-40 | θ= 22.807s-0.142 | 0.987** | |
40-60 | θ = 20.608s-0.143 | 0.987** | |
60-80 | θ = 19.080s-0.153 | 0.990** | |
马尾松针阔叶混交林 Mixed Pinus massonianabroad- leaved forest | 0-10 | θ = 22.918s-0.204 | 0.993** |
10-20 | θ = 21.353s-0.186 | 0.985** | |
20-40 | θ = 22.003s-0.158 | 0.983** | |
40-60 | θ = 22.113s-0.149 | 0.986** | |
60-80 | θ = 21.363s-0.146 | 0.987** | |
马尾松针叶林 Pinus massonianaconiferous forest | 0-10 | θ = 17.947s-0.163 | 0.995** |
10-20 | θ = 13.126s-0.198 | 0.988** | |
20-40 | θ = 15.576s-0.166 | 0.989** | |
40-60 | θ = 18.355s-0.132 | 0.987** | |
60-80 | θ = 18.196s-0.140 | 0.990** |
表2 不同土壤深度的土壤水分特征曲线的数学模型
Table 2 Mathematical models of soil water characteristic curves at different soil depths
林型 Forest type | 土壤深度 Soil depth (cm) | 数学模型1) Mathematical model1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 0-10 | θ= 25.081s-0.172 | 0.992** |
10-20 | θ = 23.283s-0.161 | 0.986** | |
20-40 | θ= 22.807s-0.142 | 0.987** | |
40-60 | θ = 20.608s-0.143 | 0.987** | |
60-80 | θ = 19.080s-0.153 | 0.990** | |
马尾松针阔叶混交林 Mixed Pinus massonianabroad- leaved forest | 0-10 | θ = 22.918s-0.204 | 0.993** |
10-20 | θ = 21.353s-0.186 | 0.985** | |
20-40 | θ = 22.003s-0.158 | 0.983** | |
40-60 | θ = 22.113s-0.149 | 0.986** | |
60-80 | θ = 21.363s-0.146 | 0.987** | |
马尾松针叶林 Pinus massonianaconiferous forest | 0-10 | θ = 17.947s-0.163 | 0.995** |
10-20 | θ = 13.126s-0.198 | 0.988** | |
20-40 | θ = 15.576s-0.166 | 0.989** | |
40-60 | θ = 18.355s-0.132 | 0.987** | |
60-80 | θ = 18.196s-0.140 | 0.990** |
图2 3种林型不同土壤深度(A, 0-10 cm; B, 10-20 cm; C, 20-40 cm; D, 40-60 cm; E, 60-80 cm)的土壤水分特征曲线。MBF、PBF和PF见图1。
Fig. 2 Soil water characteristic curves at different soil depths (A, 0-10 cm; B, 10-20 cm; C, 20-40 cm; D, 40-60 cm; E, 60-80 cm) in the three forest types. MBF, PBF and PF see .
林型 Forest type | 土壤体积含水量 Soil volumetric water content (%) | 饱和持水量 Saturated water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤容重 Soil bulk density (g·cm-3) | 有机质含量 Organic matter content (g·kg-1) |
---|---|---|---|---|---|
季风常绿阔叶林 MBF | 29.02 | 51.00 | 55.05 | 1.01 | 25.29 |
马尾松针阔叶混交林 PBF | 24.85 | 48.88 | 40.75 | 1.23 | 23.75 |
马尾松针叶林 PF | 20.46 | 40.68 | 39.05 | 1.31 | 13.30 |
表3 鼎湖山3种林型的土壤含水量和土壤理化性质
Table 3 Soil water content and soil physic-chemical properties of three forests at Dinghushan
林型 Forest type | 土壤体积含水量 Soil volumetric water content (%) | 饱和持水量 Saturated water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤容重 Soil bulk density (g·cm-3) | 有机质含量 Organic matter content (g·kg-1) |
---|---|---|---|---|---|
季风常绿阔叶林 MBF | 29.02 | 51.00 | 55.05 | 1.01 | 25.29 |
马尾松针阔叶混交林 PBF | 24.85 | 48.88 | 40.75 | 1.23 | 23.75 |
马尾松针叶林 PF | 20.46 | 40.68 | 39.05 | 1.31 | 13.30 |
林型 Forest type | 土壤体积含水量 Soil volumetric water content | 饱和持水量 Saturated water content | 土壤孔隙度 Soil porosity | 土壤容重 Soil bulk density | 有机质含量 Organic matter content |
---|---|---|---|---|---|
季风常绿阔叶林 MBF | 1.00 | 1.00 | 1.00 | 0.77 | 1.00 |
马尾松针阔叶混交林 PBF | 0.85 | 0.96 | 0.74 | 0.94 | 0.94 |
马尾松针叶林 PF | 0.71 | 0.80 | 0.71 | 1.00 | 0.53 |
表4 土壤体积含水量和土壤理化性质生成数列
Table 4 Generation series of soil volumetric water content and soil physic-chemical properties
林型 Forest type | 土壤体积含水量 Soil volumetric water content | 饱和持水量 Saturated water content | 土壤孔隙度 Soil porosity | 土壤容重 Soil bulk density | 有机质含量 Organic matter content |
---|---|---|---|---|---|
季风常绿阔叶林 MBF | 1.00 | 1.00 | 1.00 | 0.77 | 1.00 |
马尾松针阔叶混交林 PBF | 0.85 | 0.96 | 0.74 | 0.94 | 0.94 |
马尾松针叶林 PF | 0.71 | 0.80 | 0.71 | 1.00 | 0.53 |
林型 Forest type | 饱和持水量 Saturated water content | 土壤孔隙度 Soil porosity | 土壤容重 Soil bulk density | 有机质含量 Organic matter content |
---|---|---|---|---|
季风常绿阔叶林 MBF | 1.00 | 1.00 | 0.39 | 1.00 |
马尾松针阔叶混交林 PBF | 0.57 | 0.57 | 0.62 | 0.62 |
马尾松针叶林 PF | 0.62 | 1.00 | 0.33 | 0.45 |
关联度 Correlation degree | 0.729 | 0.856 | 0.446 | 0.688 |
表5 土壤理化性质参数与土壤体积含水量的灰关联系数和灰关联度
Table 5 Grey correlation coefficient and degree between soil volumetric water content and soil physic-chemical properties
林型 Forest type | 饱和持水量 Saturated water content | 土壤孔隙度 Soil porosity | 土壤容重 Soil bulk density | 有机质含量 Organic matter content |
---|---|---|---|---|
季风常绿阔叶林 MBF | 1.00 | 1.00 | 0.39 | 1.00 |
马尾松针阔叶混交林 PBF | 0.57 | 0.57 | 0.62 | 0.62 |
马尾松针叶林 PF | 0.62 | 1.00 | 0.33 | 0.45 |
关联度 Correlation degree | 0.729 | 0.856 | 0.446 | 0.688 |
图3 土壤有机质含量与其各对应土层土壤体积含水量(A)及土壤水分特征曲线参数a (B)的回归。
Fig. 3 Regression between soil organic matter content and its corresponding soil layer’s soil volumetric water content (A), parameter a of soil water characteristic curve (B).
[1] | Adams WA (1973). The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science, 24,10-17. |
[2] | Bargali SS, Singh SP, Singh RP (1993). Patterns of weight loss and nutrient release from decomposing leaf litter in an age series of eucalypt plantations. Soil Biology & Biochemistry, 25,1731-1738. |
[3] | Chen LC (陈龙池), Liao LP (廖利平), Wang SL (汪思龙), Xiao FM (肖复明) (2002). A review for research of root exudates ecology. Chinese Journal of Ecology (生态学杂志), 21(6),57-62. (in Chinese with English abstract) |
[4] | Chen LX (陈立新), Chen XW (陈祥伟), Duan WB (段文标) (1998). Larch litter and soil fertility. Chinese Journal of Applied Ecology (应用生态学报), 9,581-586. (in Chinese with English abstract) |
[5] | Chertov OG, Komarov AS, Bykhovets SS, Kobak KI (2002). Simulated soil organic matter dynamics in forests of the Leningrad administrative area, northwestern Russia. Forest Ecology and Management, 169(1-2),29-44. |
[6] | Fu L (傅立) (1992). Grey System Theory and Its Applications (灰色系统理论及其应用). Scientific and Technical Documents Publishing House, Beijing. (in Chinese) |
[7] | Gong YS (龚元石), Liao CZ (廖超子), Li BG (李保国) (1998). Spatial variability and fractal dimension for soil water content and bulk density. Acta Pedologica Sinica(土壤学报), 35,10-15. (in Chinese with English abstract) |
[8] | Guo LB, Sims REH (1999). Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agriculture, Ecosystems and Environment, 75(1-2),133-140. |
[9] | Gupta SC, Larson WE (1979). Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resources Research, 15,1633-1635. |
[10] | Haynes RJ, Swift RS, Stephen RC (1991). Influence of mixed cropping rotations (pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil and Tillage Research, 19,77-87. |
[11] | He JH (何金海), Chen ZQ (陈兆其), Liang YE (梁永奀) (1982). The soils of Dinghushan biosphere reserve. Tropical and Subtropical Forest Ecosystem Research (热带亚热带森林生态系统研究), (1),25-39. (in Chinese with English abstract) |
[12] | He L, Tang Y (2008). Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. CATENA, 72,259-269. |
[13] | Huang CB (黄承标), Liang HW (梁宏温) (1999). Investigation on soil hydro-physical properties of forest soil at different geographic regions in Guangxi. Soil and Environmental Sciences(土壤与环境), 8(2),96-100. (in Chinese with English abstract) |
[14] | Huang CY (黄昌勇) (2000). Pedology(土壤学). China Agriculture Press, Beijing. 46,139. (in Chinese) |
[15] | Hudson BD (1994). Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 66,265-275. |
[16] | Jia GM, Cao J, Wang CY, Wang G (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China. Forest Ecology and Management, 217,117-125. |
[17] | Jing GC (景国臣), Liu XJ (刘绪军), Ren XP (任宪平) (2008). Influence of soil erosion on soil properties of black soil bank farming. Research of Soil and Water Conservation(水土保持研究), 15(6),28-31. (in Chinese with English abstract) |
[18] | Li KY (李开元), Li YS (李玉山) (1991). The meaning and application of soil moisture curve. Shaanxi Journal of Agricultural Sciences (陕西农业科学), (4),47-48. (in Chinese) |
[19] | Li WH (李文华) (2006). The core of ecosystem assessment: ecosystem services research. Resources Science(资源科学), 28,4. (in Chinese) |
[20] | Li YY, Shao MA (2006). Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments, 64,77-96. |
[21] | Liang HW (梁宏温), Huang CB (黄承标), Hu CB (胡承彪) (1993). A study on the litterfall and soil fertility of the different planted forests in Guangxi. Acta Ecologica Sinica(生态学报), 13,235-242. (in Chinese with English abstract) |
[22] | Liu GS (刘光崧) (1996). Soil Physical and Chemical Analysis & Description of Soil Profiles (土壤理化分析与剖面描述).Standards Press of China, Beijing.31-33. (in Chinese) |
[23] | Liu XH (刘旭辉), Qin YR (覃勇荣), Zou ZW (邹振旺), Zhang K (张康), Pan ZX (潘振兴), Liu Q (刘倩), Yao L (姚丽) (2009). Influence of different vegetation on soil organic matter content in karst rocky desertification region in Guangxi Province. Chinese Agricultural Science Bulletin (中国农学通报), 25,394-398. (in Chinese with English abstract) |
[24] | Nadporozhskaya MA, Mohren GMJ, Chertov OG, Komarov AS, Mikhailov AV (2006). Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: an application of the ROMUL model. Ecological Modelling, 190,399-418. |
[25] | Oades JM (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil, 76,319-337. |
[26] | Ouattara K, Ouattara B, Assa A, Sédogo PM (2006). Long-term effect of ploughing, and organic matter input on soil moisture characteristics of a Ferric Lixisol in Burkina Faso. Soil & Tillage Research, 88,217-224. |
[27] | Peng SL (彭少麟), Hao YR (郝艳茹) (2005). The dynamics of forest root and its distribution during succession. Acta Scientiarum Naturalium Universitatis Sunyatseni (中山大学学报(自然科学版)), 44(5),65-69. (in Chinese with English abstract) |
[28] | Peng SL (彭少麟), Wang BS (王伯荪) (1993). Forest succession at Dinghushan, Guangdong, China. Journal of Tropical and Subtropical Botany(热带亚热带植物学报), 2,34-42. (in Chinese with English abstract) |
[29] | Peng XH (彭新华), Zhang B (张斌), Zhao QG (赵其国) (2003). Effect of soil organic carbon on aggregate stability after vegetative restoration on severely eroded red soil. Acta Ecologica Sinica (生态学报), 23,2176-2183. (in Chinese with English abstract) |
[30] | Qiu Y (邱扬), Fu BJ (傅伯杰), Wang J (王军), Chen LD (陈利顶) (2000). Quantitative analysis of relationships between spatial and temporal variation of soil moisture content and environmental factors at a gully catchment of the Loess Plateau. Acta Ecologica Sinica(生态学报), 20,741-747. (in Chinese with English abstract) |
[31] | Rawls WJ, Nemesl A, Pachepsky Y (2004). Effect of soil organic carbon on soil hydraulic properties. Developments in Soil Science, 30,95-114. |
[32] | Shan XZ (单秀枝), Wei YQ (魏由庆), Yan HJ (严慧峻), Liu JF (刘继芳), Zhang R (张锐) (1998). Influence of organic matter content on soil hydrodynamic parameters. Acta Pedologica Sinica(土壤学报), 35,1-9. (in Chinese with English abstract) |
[33] | Shao MA (邵明安), Huang MB (黄明斌) (2000). Soil Root System Hydrodynamics (土根系统水动力学). Shaanxi Science and Technology Press, Xi’an. (in Chinese) |
[34] | Song JH (宋吉红) (2008). Research on Hydrological and Ecological Functions of Forests in Jinyun Mountain, Chongqing (重庆缙云山森林水文生态功能研究). PhD dissertation, Beijing Forestry University, Beijing.69-71. (in Chinese) |
[35] | Tian YB (田应兵), Xiong MB (熊明彪), Song GY (宋光煜) (2004). Study on change of soil organic matter in the process of wetland ecological restoration in Ruoergai Plateau. Wetland Science (湿地科学), 2(2),88-93. (in Chinese with English abstract) |
[36] | Wang GL (王国梁), Liu GB (刘国彬), Zhou SL (周生路) (2003). The effect of vegetation restoration on soil stable infiltration rates in small watershed of loess gully region. Journal of Natural Resources (自然资源学报), 18,529-535. (in Chinese with English abstract) |
[37] | Wang GQ (王国勤) (2008). The Hydrological Process Study of Typical Subtropical Forests Under Water and Thermal Pattern Variation(水热格局变化下南亚热带典型森林的水文学过程研究). Master Degree dissertation, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou.67-79. (in Chinese with English abstract) |
[38] | Wen QK (文启凯), Lai ZZ (赖忠直), Guo Y (郭源) (1992). The relationship between soil water retention and soil organic matter. Xinjiang Agricultural Sciences (新疆农业科学), (4),159-160. (in Chinese) |
[39] | Wu JG (吴建国), Zhang XQ (张小全), Xu DY (徐德应) (2004). Changes in soil labile organic carbon under different land use in the Liupan Mountain forest zone. Acta Phytoecologica Sinica (植物生态学报), 28,657-664. (in Chinese with English abstract) |
[40] | Yan JH (闫俊华), Zhou GY (周国逸), Tang XL (唐旭利), Zhang DQ (张德强) (2001). Characteristics of litter and its contained water in three succession communities in Dinghushan Mountain. Chinese Journal of Applied Ecology (应用生态学报), 12,509-512. (in Chinese with English abstract) |
[41] | Yang SQ (杨世琦), Yang ZL (杨正礼) (2008). The changes of soil organic matter and pH in the course of ecosystem succession in the Loess Plateau. Research of Soil and Water Conservation (水土保持研究), 15,159-163. (in Chinese with English abstract) |
[42] | Yin GC (尹光彩), Zhou GY (周国逸), Tang XL (唐旭利), Zhang QM (张倩媚) (2003). Soil water storage of three forest types in different succession stage in Dinghushan. Journal of Jishou University (Natural Science Edition) (吉首大学学报(自然科学版)), 24(3),62-68. (in Chinese with English abstract) |
[43] | Yu XH (余新晓), Lu SW (鲁绍伟), Jin F (靳芳), Chen LH (陈丽华), Rao LY (饶良懿), Lu GQ (陆贵巧) (2005). The assessment of the forest ecosystem services evaluation in China. Acta Ecologica Sinica(生态学报), 25,2096-2102. (in Chinese with English abstract) |
[44] | Zhang H (张红), Lü JL (吕家珑), Zhao SW (赵世伟), Zhou Q (周群), Chen XY (陈小燕) (2006). Studies on soil nutrients under different vegetation types in the Ziwuling area. Agricultural Research in the Arid Areas (干旱地区农业研究), 24(2),66-68. (in Chinese with English abstract) |
[45] | Zhang Y (张勇), Pang XY (庞学勇), Bao WK (包维楷), You S (尤琛), Tang HR (汤浩茹), Hu TX (胡庭兴) (2005). A review of soil organic matter and its research methods. World Sci-Tech R & D(世界科技研究与发展), 27(5),72-78. (in Chinese with English abstract) |
[46] | Zhao SW (赵世伟), Zhou YD (周印东), Wu JS (吴金水) (2002). Soil moisture characteristics of different vegetations in northern of Ziwuling. Journal of Soil and Water Conservation (水土保持学报), 16(4),119-122. (in Chinese with English abstract) |
[47] | Zhong GH (钟国辉), Tian FY (田发益), Wang M (旺姆), Zhang HF (张红锋), Liu CH (刘翠花), Ci B (次白) (2005). Soil fertility of croplands in major agricultural areas in Tibet. Acta Pedologica Sinica (土壤学报), 42,1030-1034. (in Chinese with English abstract) |
[48] | Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils. Science, 314,1417. |
[49] | Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17,3736-3746. |
[50] | Zhou ZF (周择福), Li CZ (李昌折) (1994). Study on soil moisture characteristics of different forest vegetations in Jiulongshan, Beijing. Forest Research (林业科学研究), 7 (1),48-53. (in Chinese with English abstract) |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[4] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[5] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[6] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
[7] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[8] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
[9] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[10] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[11] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[12] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[13] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[14] | 许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J]. 植物生态学报, 2015, 39(9): 857-866. |
[15] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19