植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1219-1225.DOI: 10.3724/SP.J.1258.2011.01219
所属专题: 生态化学计量
收稿日期:
2011-04-13
接受日期:
2011-09-15
出版日期:
2011-04-13
发布日期:
2011-12-15
通讯作者:
陈双林
作者简介:
*(E-mail:cslbamboo@126.com)
GU Da-Xing1,2, CHEN Shuang-Lin1,*(), HUANG Yu-Qing2
Received:
2011-04-13
Accepted:
2011-09-15
Online:
2011-04-13
Published:
2011-12-15
Contact:
CHEN Shuang-Lin
摘要:
植物器官化学计量特征可以把环境和器官功能性状联系起来, 从而为探索环境作用于植物器官功能的内在机制及器官功能的调控提供可能。通过土壤氮(N)、磷(P)添加设置土壤不同全N和全P浓度的盆栽实验, 分析了土壤和四季竹(Oligostachyum lubricum)叶片N、P化学计量特征及叶片叶绿素含量间的关系。实验设置的土壤不同全N和全P浓度包括对照(全N: 421.76 mg·kg-1, 全P: 37.35 mg·kg-1, 1N1P)、全N和全P浓度分别是对照相应浓度的2倍和2倍(2N2P)、2倍和3倍(2N3P)、2倍和4倍(2N4P)、3倍和2倍(3N2P)、3倍和3倍(3N3P)、3倍和4倍(3N4P)、4倍和2倍(4N2P)、4倍和3倍(4N3P)、4倍和4倍(4N4P)共10个处理。结果表明: 土壤N含量分别与叶片N含量和叶片N : P呈极显著正相关, 而土壤P含量与叶片P含量及叶片N : P均无显著性相关。叶片N : P随土壤N : P的增大而增大, 但其增加速率小于土壤N : P的增加速率。相同土壤N : P (11.29)条件下, 生长在2N2P处理和3N3P处理土壤中的立竹叶片N : P无显著差异, 但均显著高于对照(1N1P)并显著低于4N4P处理。土壤不同全N浓度对叶片N : P的影响与相应浓度N和P处理对叶片N : P的影响具有相同的规律。叶片N : P是影响叶片叶绿素含量的主要因素。分析发现: 土壤全N较土壤全P对四季竹叶片N、P化学计量特征具有更大的影响, 并且在土壤全N供应充足时四季竹叶片存在对N的奢侈吸收。N、P添加前土壤N是影响四季竹生长的主要限制元素。
顾大形, 陈双林, 黄玉清. 土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响. 植物生态学报, 2011, 35(12): 1219-1225. DOI: 10.3724/SP.J.1258.2011.01219
GU Da-Xing, CHEN Shuang-Lin, HUANG Yu-Qing. Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum. Chinese Journal of Plant Ecology, 2011, 35(12): 1219-1225. DOI: 10.3724/SP.J.1258.2011.01219
土壤N、P水平 Soil N, P level | 土壤全N Soil total N (mg·kg-1) | 土壤全P Soil total P (mg·kg-1) | 土壤N : P Soil N : P |
---|---|---|---|
1N1P | 421.76 | 37.35 | 11.29 |
2N2P | 843.52 | 74.70 | 11.29 |
2N3P | 843.52 | 112.05 | 7.53 |
2N4P | 843.52 | 149.41 | 5.65 |
3N2P | 1265.29 | 74.70 | 16.94 |
3N3P | 1265.29 | 112.05 | 11.29 |
3N4P | 1265.29 | 149.41 | 8.47 |
4N2P | 1687.05 | 74.70 | 22.58 |
4N3P | 1687.05 | 112.05 | 15.06 |
4N4P | 1687.05 | 149.41 | 11.29 |
表1 各组实验土壤的N、P水平及N、P化学计量特征
Table 1 N, P levels and N, P stoichiometric characteristics of soil in every treatment
土壤N、P水平 Soil N, P level | 土壤全N Soil total N (mg·kg-1) | 土壤全P Soil total P (mg·kg-1) | 土壤N : P Soil N : P |
---|---|---|---|
1N1P | 421.76 | 37.35 | 11.29 |
2N2P | 843.52 | 74.70 | 11.29 |
2N3P | 843.52 | 112.05 | 7.53 |
2N4P | 843.52 | 149.41 | 5.65 |
3N2P | 1265.29 | 74.70 | 16.94 |
3N3P | 1265.29 | 112.05 | 11.29 |
3N4P | 1265.29 | 149.41 | 8.47 |
4N2P | 1687.05 | 74.70 | 22.58 |
4N3P | 1687.05 | 112.05 | 15.06 |
4N4P | 1687.05 | 149.41 | 11.29 |
叶片叶绿素含量 Leaf chlorophyll content | 叶片N : P Leaf N : P | 土壤N : P Soil N : P | 土壤N Soil N | 土壤P Soil P | 叶片N Leaf N | |
---|---|---|---|---|---|---|
叶片N : P Leaf N : P | 0.590** | 1.000 | ||||
土壤N : P Soil N : P | 0.347 | 0.476** | 1.000 | |||
土壤N Soil N | 0.505** | 0.804** | 0.569** | 1.000 | ||
土壤P Soil P | 0.130 | 0.317 | -0.516** | 0.375* | 1.000 | |
叶片N Leaf N | 0.462* | 0.643** | 0.190 | 0.703** | 0.573** | 1.000 |
叶片P Leaf P | -0.511** | -0.917** | -0.459* | -0.660** | -0.159 | -0.329 |
表2 土壤和叶片的N、P化学计量特征与叶片叶绿素含量间的相关系数
Table 2 Correlation coefficient among soil and leaf N, P stoichiometry and leaf chlorophyll content
叶片叶绿素含量 Leaf chlorophyll content | 叶片N : P Leaf N : P | 土壤N : P Soil N : P | 土壤N Soil N | 土壤P Soil P | 叶片N Leaf N | |
---|---|---|---|---|---|---|
叶片N : P Leaf N : P | 0.590** | 1.000 | ||||
土壤N : P Soil N : P | 0.347 | 0.476** | 1.000 | |||
土壤N Soil N | 0.505** | 0.804** | 0.569** | 1.000 | ||
土壤P Soil P | 0.130 | 0.317 | -0.516** | 0.375* | 1.000 | |
叶片N Leaf N | 0.462* | 0.643** | 0.190 | 0.703** | 0.573** | 1.000 |
叶片P Leaf P | -0.511** | -0.917** | -0.459* | -0.660** | -0.159 | -0.329 |
图2 土壤不同N、P含量对四季竹叶片N : P的影响(平均值±标准误差)。N、P水平同表1。
Fig. 2 Effect of different N, P contents in the soil on leaf N : P of Oligostachyum lubricum (mean ± SE). N, P level see Table 1.
影响因子 Influencing factors | 直接效应 Direct effect | 间接效应 Indirect effect | 相关系数 Correlation coefficient | ||||
---|---|---|---|---|---|---|---|
X1→Y | X2→Y | X3→Y | X4→Y | 总计 Total | |||
X1 | 0.312 | 0.012 | 0.130 | 0.137 | 0.278 | 0.590** | |
X2 | 0.015 | 0.251 | 0.140 | 0.099 | 0.490 | 0.505** | |
X3 | 0.202 | 0.201 | 0.010 | 0.049 | 0.260 | 0.462* | |
X4 | -0.149 | -0.286 | -0.010 | -0.066 | -0.362 | -0.511** |
表3 四季竹叶片叶绿素含量影响因子的通径分析结果
Table 3 Results of the path analysis between each influencing factor and leaf chlorophyll content of Oligostachyum lubricum
影响因子 Influencing factors | 直接效应 Direct effect | 间接效应 Indirect effect | 相关系数 Correlation coefficient | ||||
---|---|---|---|---|---|---|---|
X1→Y | X2→Y | X3→Y | X4→Y | 总计 Total | |||
X1 | 0.312 | 0.012 | 0.130 | 0.137 | 0.278 | 0.590** | |
X2 | 0.015 | 0.251 | 0.140 | 0.099 | 0.490 | 0.505** | |
X3 | 0.202 | 0.201 | 0.010 | 0.049 | 0.260 | 0.462* | |
X4 | -0.149 | -0.286 | -0.010 | -0.066 | -0.362 | -0.511** |
[1] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30,1-67. |
[2] | Aerts R, de Caluwe H, Beltman B (2003). Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation? Oikos, 101,489-498. |
[3] | Ågren GI (2004). The C : N : P stoichiometry of autotrophs―theory and observations. Ecology Letters, 7,185-191. |
[4] | Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10,187-200. |
[5] | Chen FS (陈伏生), Hu XF (胡小飞), Ge G (葛刚) (2007). Leaf N : P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City. Acta Prataculturae Sinica (草业学报), 16(4),47-54. (in Chinese with English abstract) |
[6] | Ding F (丁凡), Lian PY (廉培勇), Zeng DH (曾德慧) (2011). Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentrations in Songen Plain meadow. Chinese Journal of Ecology (生态学杂志), 30,77-81. (in Chinese with English abstract) |
[7] | Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N : P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience, 46,674-684. |
[8] | Elser JJ, Urabe J (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80,735-751. |
[9] | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 25-55. |
[10] | Garnier E (1998). Interspecific variation in plasticity of grasses in response to nitrogen supply. In: Cheplick GP ed. Population Biology of Grasses. Cambridge University Press, Cambridge, UK. 155-181. |
[11] | Güsewell S (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164,243-266. |
[12] | Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass N : P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13,372-384. |
[13] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168,377-385. |
[14] | He JS (贺金生), Han XG (韩兴国) (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology (植物生态学报), 34,2-6. (in Chinese with English abstract) |
[15] | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149,115-122. |
[16] | Hessen DO (1997). Stoichiometry in food webs―Lotka revisited. Oikos, 79,195-200. |
[17] | Kerkhoof AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168,E103-E122. |
[18] | Kooijman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177,139-149. |
[19] | Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London. |
[20] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwild: implications of terrestrial Redfield-type ratios. Ecology, 85,2390-2401. |
[21] | Nielsen SL, Enriquez S, Duarte CM, Sand-Jensen K (1996). Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10,167-175. |
[22] | Schimel DS (2003). All life is chemical. BioScience, 53,521-524. |
[23] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48,7-20. |
[24] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to Biosphere. Princeton University Press, Princeton. |
[25] | Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savanna species. New Phytologist, 167,493-508. |
[26] | Wang ML (王满莲), Feng YL (冯玉龙) (2005). Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chrom- oleana odorata. Acta Phytoecologica Sinica (植物生态学报), 29,697-705. (in Chinese with English abstract) |
[27] | Xiao JH (萧江华) (2010). Bamboo Forest Management of China (中国竹林经营学). Science Press, Beijing. (in Chinese) |
[28] | Yan ER (阎恩荣), Wang XH (王希华), Zhou W (周武) (2008). N : P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32,13-22. (in Chinese with English abstract) |
[29] | Yang K (杨阔), Huang JH (黄建辉), Dong D (董丹), Ma WH (马文红), He JS (贺金生) (2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai- Tibetan Plateau, China. Chinese Journal of Plant Ecology (植物生态学报), 34,17-22. (in Chinese with English abstract). |
[30] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica (植物生态学报), 29,1007-1019. (in Chinese with English abstract) |
[31] | Zhang LX, Bai YF, Han XG (2003). Application of N : P stoichiometry to ecology studies. Acta Botanica Sinica, 45,1009-1018. |
[32] | Zhang XY (张献义), Chen JL (陈金林), Ye CQ (叶长青), Liang WY (梁文焰), Zhang BS (张碧松), Li QP (李启鹏) (1995). Study on the relationship between nutrition dynamics and yield of Phyllostachys pubescens. Forest Research (林业科学研究), 8,477-482. (in Chinese with English abstract) |
[33] | Zhao DL, Reddy KR, Kakani VG, Reddy VR (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22,391-403. |
[34] | Zhou H (周桦), Yu WT (宇万太), Ma Q (马强), Xu YG (徐永刚), Chen JN (陈进宁), Chen GJ (陈桂金), Li JZ (李俊真), Zhang RH (张日华) (2010). Effects of topdressing nitrogen fertilization on the concentration and storage of major nutrients in eucalyptus leaves. Chinese Journal of Ecology (生态学杂志), 29,1488-1492. (in Chinese with English abstract) |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[4] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[7] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[8] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[9] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[10] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[11] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[12] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[13] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[14] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[15] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19