植物生态学报 ›› 2012, Vol. 36 ›› Issue (9): 923-934.DOI: 10.3724/SP.J.1258.2012.00923
• 研究论文 • 下一篇
收稿日期:
2012-03-30
接受日期:
2012-06-01
出版日期:
2012-03-30
发布日期:
2012-09-06
通讯作者:
赵秀海
作者简介:
(E-mail: zhaoxh@bjfu.edu.cn)
YAN Yan, ZHANG Chun-Yu, ZHAO Xiu-Hai*()
Received:
2012-03-30
Accepted:
2012-06-01
Online:
2012-03-30
Published:
2012-09-06
Contact:
ZHAO Xiu-Hai
摘要:
为解释长白山温带森林群落构建和物种多度格局的形成过程, 该文以不同演替阶段的针阔混交林监测样地数据为基础, 采用中性理论模型、生物统计模型(对数正态分布模型)和生态位模型(Zifp模型、分割线段模型、生态位优先模型)拟合森林群落物种多度分布, 并用χ 2检验、Kolmogorov-Smirnov (K-S)检验和赤池信息准则(AIC)选择最佳拟合模型。结果显示: 中性模型能很好地预测长白山温带森林不同演替阶段植物群落的物种多度分布。在10 m × 10 m尺度上, 5种模型均可被χ 2检验和K-S检验接受, 但中性模型拟合效果不如对数正态分布模型、Zifp模型、分割线段模型和生态位优先模型, 表明小尺度上中性过程和生态位过程均能解释群落物种多度分布, 但生态位过程的解释能力相对较大。而在中大尺度上(30 m × 30 m、60 m × 60 m和90 m × 90 m), 中性模型为最优拟合模型, 并且随着研究尺度增加, 生态位模型和生物统计模型逐渐被χ 2检验拒绝, 表明中性过程在长白山针阔混交林群落物种多度分布格局形成中的作用随着研究尺度增加而逐渐增大。该文证实了中性过程在长白山温带针阔混交林群落结构形成中具有重要作用, 但未否认生态位机制在群落构建中的贡献。因此, 温带森林群落构建过程中中性理论和生态位理论并非相互矛盾, 而是相互融合的。在研究森林群落物种多度分布时, 应重视取样尺度和演替阶段的影响, 并采用多种模型进行拟合。
闫琰, 张春雨, 赵秀海. 长白山不同演替阶段针阔混交林群落物种多度分布格局. 植物生态学报, 2012, 36(9): 923-934. DOI: 10.3724/SP.J.1258.2012.00923
YAN Yan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China. Chinese Journal of Plant Ecology, 2012, 36(9): 923-934. DOI: 10.3724/SP.J.1258.2012.00923
林型 Forest type | 经纬度 Longitude and latitude | 平均海拔 Average elevation | 样地面积 Plot area | 原始植被 Primary vegetation |
---|---|---|---|---|
次生杨桦林 Secondary Populus davidiana-Betula platyphylla forest | 42o19.162′ N | 899 m | 5.2 hm2 | 阔叶红松林 Broad-leaved Pinus koraiensis forest |
128o07.82′ E | (260 m × 200 m) | |||
次生针阔混交林 Secondary conifer and broad-leaved mixed forest | 42o20.91′ N | 748 m | 5.2 hm2 | |
128o07.99′ E | (260 m × 200 m) | |||
椴树红松林 Tilia amurensis-Pinus koraiensis mixed forest | 42o13.68′ N | 1 042 m | 5.2 hm2 | |
128o04.57′ E | (260 m × 200 m) |
表1 长白山永久监测样地概况(张春雨等, 2009)
Table 1 Summary of permanent forest plots in Changbai Mountains (Zhang et al., 2009)
林型 Forest type | 经纬度 Longitude and latitude | 平均海拔 Average elevation | 样地面积 Plot area | 原始植被 Primary vegetation |
---|---|---|---|---|
次生杨桦林 Secondary Populus davidiana-Betula platyphylla forest | 42o19.162′ N | 899 m | 5.2 hm2 | 阔叶红松林 Broad-leaved Pinus koraiensis forest |
128o07.82′ E | (260 m × 200 m) | |||
次生针阔混交林 Secondary conifer and broad-leaved mixed forest | 42o20.91′ N | 748 m | 5.2 hm2 | |
128o07.99′ E | (260 m × 200 m) | |||
椴树红松林 Tilia amurensis-Pinus koraiensis mixed forest | 42o13.68′ N | 1 042 m | 5.2 hm2 | |
128o04.57′ E | (260 m × 200 m) |
图1 不同取样尺度下次生杨桦林的物种多度分布及模型拟合。
Fig. 1 Species-abundance distribution and model fittings at different sampling scales in secondary Populus davidiana-Betula platyphylla forest.
取样尺度 Sampling scale | θ | m | 检验方法 Test method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 3.90 | 0.05 | AIC | 12.33 | -12.09 | -1.11 | 2.62 | -1.57 |
D | 0.30 | 0.10 | 0.10 | 0.10 | 0.10 | |||
χ2 | 2.79 | 0.50 | 1.79 | 1.75 | 0.59 | |||
30 m × 30 m | 4.94 | 0.01 | AIC | 19.25 | 57.29 | 85.65 | 102.48 | 75.24 |
D | 0.09 | 0.09 | 0.27 | 0.23 | 0.05 | |||
χ2 | 2.62 | 7.39 | 32.22 | 62.71** | 11.14 | |||
60 m × 60 m | 5.16 | 1.66×10-3 | AIC | -56.45 | 173.78 | 201.38 | 223.02 | 173.69 |
D | 0.03 | 0.10 | 0.40* | 0.30 | 0.10 | |||
χ2 | 0.04 | 58.47** | 199.78** | 437.61** | 47.24* | |||
90 m × 90 m | 5.45 | 7.46×10-4 | AIC | -100.05 | 266.41 | 297.52 | 332.30 | 274.31 |
D | 0.03 | 0.14 | 0.44** | 0.33* | 0.11 | |||
χ2 | 0.00 | 169.44** | 537.44** | 1473.27** | 152.41** |
表2 不同取样尺度下次生杨桦林5种模型拟合的优度检验和中性模型参数
Table 2 Goodness of fit test of five models and parameters of neutral model at different sampling scales in secondary Populus davidiana-Betula platyphylla forest
取样尺度 Sampling scale | θ | m | 检验方法 Test method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 3.90 | 0.05 | AIC | 12.33 | -12.09 | -1.11 | 2.62 | -1.57 |
D | 0.30 | 0.10 | 0.10 | 0.10 | 0.10 | |||
χ2 | 2.79 | 0.50 | 1.79 | 1.75 | 0.59 | |||
30 m × 30 m | 4.94 | 0.01 | AIC | 19.25 | 57.29 | 85.65 | 102.48 | 75.24 |
D | 0.09 | 0.09 | 0.27 | 0.23 | 0.05 | |||
χ2 | 2.62 | 7.39 | 32.22 | 62.71** | 11.14 | |||
60 m × 60 m | 5.16 | 1.66×10-3 | AIC | -56.45 | 173.78 | 201.38 | 223.02 | 173.69 |
D | 0.03 | 0.10 | 0.40* | 0.30 | 0.10 | |||
χ2 | 0.04 | 58.47** | 199.78** | 437.61** | 47.24* | |||
90 m × 90 m | 5.45 | 7.46×10-4 | AIC | -100.05 | 266.41 | 297.52 | 332.30 | 274.31 |
D | 0.03 | 0.14 | 0.44** | 0.33* | 0.11 | |||
χ2 | 0.00 | 169.44** | 537.44** | 1473.27** | 152.41** |
图2 不同取样尺度下次生针阔混交林的物种多度分布及模型拟合。
Fig. 2 Species-abundance distribution and model fittings at different sampling scales in secondary conifer and broad-leaved mixed forest.
图3 不同取样尺度下椴树红松林的物种多度分布及模型拟合。
Fig. 3 Species-abundance distribution and model fittings at different sampling scales in Tilia amurensis-Pinus koraiensis mixed forest.
取样尺度 Sampling scale | θ | m | 检验方法 Testing method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 4.02 | 6.81×10-2 | AIC | 11.63 | -9.54 | -1.29 | -3.65 | -3.29 |
D | 0.33 | 0.11 | 0.11 | 0.11 | 0.11 | |||
χ2 | 2.57 | 0.50 | 1.62 | 0.94 | 0.44 | |||
30 m × 30 m | 4.52 | 8.48×10-3 | AIC | -0.49 | 43.63 | 63.96 | 78.09 | 49.46 |
D | 0.11 | 0.05 | 0.32 | 0.21 | 0.05 | |||
χ2 | 2.40 | 4.51 | 18.27 | 39.93** | 6.77 | |||
60 m × 60 m | 4.72 | 2.26×10-3 | AIC | -30.12 | 138.20 | 160.07 | 183.85 | 135.34 |
D | 0.04 | 0.12 | 0.35 | 0.27 | 0.08 | |||
χ2 | 0.69 | 30.73 | 104.53** | 333.23** | 38.10* | |||
90 m × 90 m | 5.13 | 1.08×10-3 | AIC | -62.54 | 228.97 | 250.67 | 278.79 | 211.49 |
D | 0.03 | 0.16 | 0.41* | 0.31 | 0.09 | |||
χ2 | 0.03 | 110.80** | 313.97** | 1 083.38** | 89.22** |
表3 次生针阔混交林不同尺度下5种模型拟合优度检验和中性模型参数
Table 3 Goodness of fit test of five models and parameters of neutral model at different sampling scales in secondary conifer and broad-leaved mixed forest
取样尺度 Sampling scale | θ | m | 检验方法 Testing method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 4.02 | 6.81×10-2 | AIC | 11.63 | -9.54 | -1.29 | -3.65 | -3.29 |
D | 0.33 | 0.11 | 0.11 | 0.11 | 0.11 | |||
χ2 | 2.57 | 0.50 | 1.62 | 0.94 | 0.44 | |||
30 m × 30 m | 4.52 | 8.48×10-3 | AIC | -0.49 | 43.63 | 63.96 | 78.09 | 49.46 |
D | 0.11 | 0.05 | 0.32 | 0.21 | 0.05 | |||
χ2 | 2.40 | 4.51 | 18.27 | 39.93** | 6.77 | |||
60 m × 60 m | 4.72 | 2.26×10-3 | AIC | -30.12 | 138.20 | 160.07 | 183.85 | 135.34 |
D | 0.04 | 0.12 | 0.35 | 0.27 | 0.08 | |||
χ2 | 0.69 | 30.73 | 104.53** | 333.23** | 38.10* | |||
90 m × 90 m | 5.13 | 1.08×10-3 | AIC | -62.54 | 228.97 | 250.67 | 278.79 | 211.49 |
D | 0.03 | 0.16 | 0.41* | 0.31 | 0.09 | |||
χ2 | 0.03 | 110.80** | 313.97** | 1 083.38** | 89.22** |
取样尺度 Sampling scale | θ | m | 检验方法 Testing method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 1.70 | 3.85×10-2 | AIC | 10.93 | - | -0.58 | -4.58 | -6.05 |
D | 0.11 | 0.11 | 0.33 | 0.22 | 0.11 | |||
χ2 | 5.40 | 0.00 | 0.55 | 0.68 | 0.18 | |||
30 m × 30 m | 1.77 | 4.29×10-3 | AIC | 17.42 | 35.94 | 42.24 | 48.50 | 24.92 |
D | 0.11 | 0.11 | 0.33 | 0.22 | 0.11 | |||
χ2 | 2.48 | 6.79 | 18.74* | 36.49** | 2.97 | |||
60 m × 60 m | 1.68 | 1.00×10-3 | AIC | -7.13 | 81.56 | 85.51 | 87.36 | 66.07 |
D | 0.09 | 0.09 | 0.36 | 0.36 | 0.09 | |||
χ2 | 0.34 | 72.00** | 124.70** | 250.62** | 25.79** | |||
90 m × 90 m | 1.62 | 4.28×10-4 | AIC | -6.51 | 110.29 | 113.89 | 115.97 | 94.99 |
D | 0.08 | 0.17 | 0.42 | 0.33 | 0.17 | |||
χ2 | 0.52 | 219.31** | 348.21** | 708.79** | 84.41** |
表4 椴树红松林不同尺度下5种模型拟合优度检验和中性模型参数
Table 4 Goodness of fit test of five models and parameters of neutral model at different sampling scales in Tilia amurensis-Pinus koraiensis mixed forest
取样尺度 Sampling scale | θ | m | 检验方法 Testing method | NT | LN | ZM | BS | NP |
---|---|---|---|---|---|---|---|---|
10 m × 10 m | 1.70 | 3.85×10-2 | AIC | 10.93 | - | -0.58 | -4.58 | -6.05 |
D | 0.11 | 0.11 | 0.33 | 0.22 | 0.11 | |||
χ2 | 5.40 | 0.00 | 0.55 | 0.68 | 0.18 | |||
30 m × 30 m | 1.77 | 4.29×10-3 | AIC | 17.42 | 35.94 | 42.24 | 48.50 | 24.92 |
D | 0.11 | 0.11 | 0.33 | 0.22 | 0.11 | |||
χ2 | 2.48 | 6.79 | 18.74* | 36.49** | 2.97 | |||
60 m × 60 m | 1.68 | 1.00×10-3 | AIC | -7.13 | 81.56 | 85.51 | 87.36 | 66.07 |
D | 0.09 | 0.09 | 0.36 | 0.36 | 0.09 | |||
χ2 | 0.34 | 72.00** | 124.70** | 250.62** | 25.79** | |||
90 m × 90 m | 1.62 | 4.28×10-4 | AIC | -6.51 | 110.29 | 113.89 | 115.97 | 94.99 |
D | 0.08 | 0.17 | 0.42 | 0.33 | 0.17 | |||
χ2 | 0.52 | 219.31** | 348.21** | 708.79** | 84.41** |
1 | Borda-de-Água L, Borges PAV, Hubbell SP, Pereira HM ( 2011). Spatial scaling of species abundance distributions. Ecography, 34, 549-556. |
2 | Brown C, Law R, IIIian JB, Burslem DFRP ( 2011). Linking ecological processes with spatial and non-spatial patterns in plant communities. Journal of Ecology, 99, 1402-1414. |
3 |
Burnham KP, Anderson DR ( 2002). Model Selection and Multi-Model Inference: a Practical Information-Theoretic Approach 2nd edn. Springer-Verlag, New York.
URL PMID |
4 | Cheng BR ( 程伯容), Xu GS ( 许广山), Ding GF ( 丁桂芳 ) ( 1981). The main soil groups and their properties of the natural reserve on northern slope of Changbai Mountain. Forest Ecosystem Research (森林生态系统研究), 2, 196-206. (in Chinese with English abstract) |
5 | Cheng JJ ( 程佳佳), Mi XC ( 米湘成), Ma KP ( 马克平), Zhang JT ( 张金屯 ) ( 2011). Responses of species-abundance distribution to varying sampling scales in a subtropical broad-leaved forest. Biodiversity Science (生物多样性), 19, 168-177. (in Chinese with English abstract) |
6 | Etienne RS ( 2005). A new sampling formula for neutral biodiversity. Ecology Letters, 8, 253-260. |
7 | Feng Y ( 冯云), Ma KM ( 马克明), Zhang YX ( 张育新), Guo QR ( 郭起荣 ) ( 2011). Effects of slope position on species abundance distribution of Quercus wutaishanica community in Dongling Mountain of Beijing. Chinese Journal of Ecology (生态学杂志), 30, 2137-2144. (in Chinese with English abstract) |
8 | Feng Y ( 冯云), Ma KM ( 马克明), Zhang YX ( 张育新), Qi J ( 祁建), Zhang JY ( 张洁瑜 ) ( 2007). Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica (生态学报), 27, 4743-4750. (in Chinese with English abstract) |
9 | Frontier S ( 1985). Diversity and structure in aquatic ecosystems. In: Rnes M ed. Oceanography and Marine Biology: an Annual Review. Aberdeen University Press,Aberdeen. 253-312. |
10 | Gazol A, Ibáñez R ( 2010). Variation of plant diversity in a temperate unmanaged forest in northern Spain: behind the environmental and spatial explanation. Plant Ecology, 207, 1-11. |
11 | Green JL, Plotkin JB ( 2007). A statistical theory for sampling species abundances. Ecology Letters, 10, 1037-1045. |
12 | Guo XY ( 郭逍宇), Zhang JT ( 张金屯), Gong HL ( 宫辉力), Zhang GL ( 张桂莲), Dong Z ( 董志 ) ( 2007). Species abundance patterns of artificial vegetation in Antaibao open mine. Scientia Silvae Sinicae (林业科学), 43, 118-121. (in Chinese with English abstract) |
13 | Hao ZQ, Zhang J, Song B, Ye J, Li BH ( 2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 252, 1-11. |
14 | Huang JX ( 黄建雄), Zhang FY ( 张凤英), Mi XC ( 米湘成 ) ( 2010). Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chinese Journal of Plant Ecology (植物生态学报), 34, 309-315. (in Chinese with English abstract) |
15 | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA. 375. |
16 | Hubbell SP (2008). Approaching ecological complexity from the perspective of symmetric neutral theory. In: Carson WP, Schnitzer SA eds. Tropical Forest Community Ecology. Wiley-Blackwell, Chichester. 143-159. |
17 | Laliberté E, Paquette A, Legendre P, Bouchard A ( 2009). Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia, 159, 377-388. |
18 | Levin SA ( 1992). The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology, 73, 1943-1967. |
19 | Liu JF ( 刘金福), Hong W ( 洪伟 ) ( 2001). Study on species abundance distribution of Castanopsis kawakamii natural forest in Fujian Sanming. Scientia Silvae Sinicae (林业科学), 37, 200-204. (in Chinese with English abstract) |
20 | Ma KM ( 马克明 ) ( 2003). Advances of the study on species abundance pattern. Acta Phytoecologica Sinica (植物生态学报), 27, 412-426. (in Chinese with English abstract) |
21 | MacArthur RH ( 1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences of the United States of America, 43, 283-295. |
22 | McGill BJ ( 2003). Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artifact? Ecology Letters, 6, 766-773. |
23 | McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He FL, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP ( 2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995-1015. |
24 | Morlon H, White EP, Etienne RS, Green JL, Ostling A, Alonso D, Enquist BJ, He FL, Hurlbert A, Magurran AE, Maurer BA, McGill BJ, Olff H, Storch D, Zillio T ( 2009). Taking species abundance distributions beyond individuals. Ecol- ogy Letters, 12, 488-501. |
25 | Motomura I ( 1932). On the statistical treatment of communities. Zoological Magazine (Tokyo), 44, 379-383. (in Japanese) |
26 | Peng SL ( 彭少麟), Yin ZY ( 殷作云), Ren H ( 任海), Guo QF ( 郭勤峰 ) ( 2003). Advances in research on the species- abundance relationship models in multi-species collection. Acta Ecologica Sinica (生态学报), 23, 1590-1605. (in Chinese with English abstract) |
27 | Preston FW ( 1948). The commonness, and rarity, of species. Ecology, 29, 254-283. |
28 | Ren P ( 任萍), Wang XA ( 王孝安), Guo H ( 郭华 ) ( 2009). Species abundance distribution pattern of forest communities on Loess Plateau. Chinese Journal of Ecology (生态学杂志), 28, 1449-1455. (in Chinese with English abstract) |
29 | R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.http://www.r-project.org.Cited15Mar.2012 . |
30 | Stokes CJ, Archer SR ( 2010). Niche differentiation and neutral theory: an integrated perspective on shrub assemblages in a parkland savanna. Ecology, 91, 1152-1162. |
31 | Tang ZY ( 唐志尧), Qiao XJ ( 乔秀娟), Fang JY ( 方精云 ) ( 2009). Species-area relationship in biological communities. Biodiversity Science (生物多样性), 17, 549-559. (in Chinese with English abstract) |
32 | Tokeshi M ( 1993). Species abundance patterns and community structure. Advances in Ecological Research, 24, 112-186. |
33 | Volkov I, Banavar JR, He FL, Hubbell SP, Maritan A ( 2005). Density dependence explains tree species abundance and diversity in tropical forest. Nature, 438, 658-661. |
34 | Walker SC, Cyr H ( 2007). Testing the standard neutral model of biodiversity in lake communities. Oikos, 116, 143-155. |
35 | Wang XG, Hao ZQ, Ye J, Zhang J, Li BH, Yao XL ( 2008). Spatial pattern of diversity in an old-growth temperate forest in Northeastern China. Acta Oecologica, 33, 345-354. |
36 | Wilson JB ( 1991). Methods for fitting dominance/diversity curves. Journal of Vegetation Science, 2, 35-46. |
37 | Yan BG ( 闫帮国), Wen WQ ( 文维全), Zhang J ( 张健), Yang WQ ( 杨万勤), Liu Y ( 刘洋), Huang X ( 黄旭), Li ZB ( 李泽波 ) ( 2010). Plant community assembly rules across a subalpine grazing gradient in western Sichuan, China. Chinese Journal of Plant Ecology (植物生态学报), 34, 1294-1302. (in Chinese with English abstract) |
38 | Yuan ZQ, Gazol A, Wang XG, Lin F, Ye J, Bai XJ, Li BH, Hao ZQ ( 2011). Scale specific determinants of tree diversity in an old growth temperate forest in China. Basic and Applied Ecology, 12, 488-495. |
39 | Zhang CY ( 张春雨 ) ( 2009). Population Structure of Tree Species and Environmental Interpretation in Coniferous and Broadleaved Mixed Forest in Changbai Mountain (长白山针阔混交林种群结构及环境解释). PhD dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract) |
40 |
Zhang CY, Zhao XH, von Gadow K ( 2010). Partitioning temperate plant community structure at different scales. Acta Oecologica, 36, 306-313.
DOI URL |
41 |
Zhang CY ( 张春雨), Zhao XH ( 赵秀海), Zhao YZ ( 赵亚洲 ) ( 2009). Community structure in different successional stages in north temperate forests of Changbai Mountains, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1090-1100. (in Chinese with English abstract)
DOI URL |
42 | Zhang J, Hao ZQ, Song B, Li BH, Wang XG, Ye J ( 2009). Fine-scale species co-occurrence patterns in an old-growth temperate forest. Forest Ecology and Management, 257, 2115-2120. |
43 | Zhang JT ( 张金屯 ) ( 1999). Species abundance patterns in some broad-leaved deciduous forests in New York, USA. Acta Phytoecologica Sinica (植物生态学报), 23, 481-489. (in English with Chinese abstract) |
44 | Zillio T, He FL ( 2010). Inferring species abundance distribution across spatial scales. Oikos, 119, 71-80. |
[1] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[2] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[3] | 胡菀,张志勇,陈陆丹,彭焱松,汪旭. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1): 44-55. |
[4] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[5] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[6] | 张琴, 张东方, 吴明丽, 郭杰, 孙成忠, 谢彩香. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7): 770-778. |
[7] | 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. |
[8] | 许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子[J]. 植物生态学报, 2017, 41(4): 396-408. |
[9] | 李艳朋, 许涵, 李意德, 骆土寿, 陈德祥, 周璋, 林明献, 杨怀. 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应[J]. 植物生态学报, 2016, 40(9): 861-870. |
[10] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[11] | 余敏,周志勇,康峰峰,欧阳帅,米湘成,孙建新. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5): 373-383. |
[12] | 袁自强, 魏盼盼, 高本强, 张荣. 取样尺度对亚高寒草甸物种多样性与生产力关系的影响[J]. 植物生态学报, 2012, 36(12): 1248-1255. |
[13] | 庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10): 1095-1105. |
[14] | 朱敬芳, 邢白灵, 居为民, 朱高龙, 柳艺博. 内蒙古草原植被覆盖度遥感估算[J]. 植物生态学报, 2011, 35(6): 615-622. |
[15] | 唐艳, 王传宽. 东北主要树种光合作用可行的离体测定方法[J]. 植物生态学报, 2011, 35(4): 452-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19