植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 249-261.DOI: 10.3724/SP.J.1258.2014.00022
所属专题: 青藏高原植物生态学:群落生态学
郭彦龙1,2, 卫海燕1,*(), 路春燕1,3, 张海龙1, 顾蔚2,4,*(
)
收稿日期:
2013-06-27
接受日期:
2013-10-16
出版日期:
2014-06-27
发布日期:
2014-02-27
通讯作者:
卫海燕,顾蔚
作者简介:
weigu@snnu.edu.cn基金资助:
GUO Yan-Long1,2, WEI Hai-Yan1,*(), LU Chun-Yan1,3, ZHANG Hai-Long1, GU Wei2,4,*(
)
Received:
2013-06-27
Accepted:
2013-10-16
Online:
2014-06-27
Published:
2014-02-27
Contact:
WEI Hai-Yan,GU Wei
摘要:
桃儿七(Sinopodophyllum hexandrum)为小檗科多年生草本植物, 是我国濒危传统藏药, 预测气候变化对该物种分布范围的影响对于其保护和资源可持续利用具有重要意义。该文利用获得的桃儿七136个地理分布记录和21个气候环境图层, 通过MaxEnt模型分析桃儿七在我国西部七省的潜在地理分布, 并基于该模型预测政府间气候变化专门委员会(IPCC)发布的SRES-A1B、SRES-A2和SRES-B1气候情景下21世纪20、50和80年代桃儿七分布范围。结果表明: 最热季平均温度、年降水量、温度季节性变动系数和等温性是影响桃儿七分布的主要气候因子; 在当前气候条件下, 桃儿七适宜的生境面积占研究区总面积的11.71%, 主要集中在青藏高原东缘的四川、甘肃、青海境内次生植被丰富、地形复杂的高海拔地区, 低适宜生境与不适宜生境分别占研究区总面积的15.86%与72.43%。由模型预测可知, 在SRES-A1B、SRES-A2和SRES-B1三种情景下, 桃儿七在研究区低适宜生境的数量相对变化较小, 在适宜生境先大幅减少后又缓慢增加。研究结果同时表明, 在未来气候变化条件下, 桃儿七的适宜生境平均海拔将逐渐升高, 范围以及几何重心极有可能先向北移, 然后再向西延伸至青藏高原内部较高海拔的山区。
郭彦龙, 卫海燕, 路春燕, 张海龙, 顾蔚. 气候变化下桃儿七潜在地理分布的预测. 植物生态学报, 2014, 38(3): 249-261. DOI: 10.3724/SP.J.1258.2014.00022
GUO Yan-Long, WEI Hai-Yan, LU Chun-Yan, ZHANG Hai-Long, GU Wei. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change. Chinese Journal of Plant Ecology, 2014, 38(3): 249-261. DOI: 10.3724/SP.J.1258.2014.00022
数据简称 Code | 中文名称 Chinese name | 英文名称 English name |
---|---|---|
Bio1 | 年平均气温 | Annual mean air temperature |
Bio2 | 平均气温日较差 (平均每月最高气温-平均每月最低气温) | Mean diurnal air temperature range (Mean of monthly (maximum air temperature-minimum air temperature)) |
Bio3 | 等温性 | Isothermality |
Bio4 | 气温季节性变动系数 | Air temperature seasonality |
Bio5 | 最热月的最高气温 | Max air temperature of the warmest month |
Bio6 | 最冷月的最低气温 | Min air temperature of the coldest month |
Bio7 | 气温年较差 | Air temperature annual range |
Bio8 | 最湿季平均气温 | Mean air temperature of the wettest quarter |
Bio9 | 最干季平均气温 | Mean air temperature of the driest quarter |
Bio10 | 最热季平均气温 | Mean air temperature of the warmest quarter |
Bio11 | 最冷季平均气温 | Mean air temperature of the coldest quarter |
Bio12 | 年降水量 | Annual precipitation |
Bio13 | 最湿月降水量 | Precipitation of the wettest month |
Bio14 | 最干月降水量 | Precipitation of the driest month |
Bio15 | 降水量的季节性变化(变异系数) | Precipitation seasonality (coefficient of variation) |
Bio16 | 最干季降水量 | Precipitation of the driest quarter |
Bio17 | 最湿季降水量 | Precipitation of the wettest quarter |
Bio18 | 最热季降水量 | Precipitation of the warmest quarter |
Bio19 | 最冷季降水量 | Precipitation of the coldest quarter |
ATG | 生长期平均气温* | Average air temperature of growth period* |
PG | 生长期降水量* | Precipitation of growth period* |
表1 桃儿七潜在地理分布评价指标
Table 1 Climatic variables used for predicting potential geographic distribution of Sinopodophyllum hexandrum
数据简称 Code | 中文名称 Chinese name | 英文名称 English name |
---|---|---|
Bio1 | 年平均气温 | Annual mean air temperature |
Bio2 | 平均气温日较差 (平均每月最高气温-平均每月最低气温) | Mean diurnal air temperature range (Mean of monthly (maximum air temperature-minimum air temperature)) |
Bio3 | 等温性 | Isothermality |
Bio4 | 气温季节性变动系数 | Air temperature seasonality |
Bio5 | 最热月的最高气温 | Max air temperature of the warmest month |
Bio6 | 最冷月的最低气温 | Min air temperature of the coldest month |
Bio7 | 气温年较差 | Air temperature annual range |
Bio8 | 最湿季平均气温 | Mean air temperature of the wettest quarter |
Bio9 | 最干季平均气温 | Mean air temperature of the driest quarter |
Bio10 | 最热季平均气温 | Mean air temperature of the warmest quarter |
Bio11 | 最冷季平均气温 | Mean air temperature of the coldest quarter |
Bio12 | 年降水量 | Annual precipitation |
Bio13 | 最湿月降水量 | Precipitation of the wettest month |
Bio14 | 最干月降水量 | Precipitation of the driest month |
Bio15 | 降水量的季节性变化(变异系数) | Precipitation seasonality (coefficient of variation) |
Bio16 | 最干季降水量 | Precipitation of the driest quarter |
Bio17 | 最湿季降水量 | Precipitation of the wettest quarter |
Bio18 | 最热季降水量 | Precipitation of the warmest quarter |
Bio19 | 最冷季降水量 | Precipitation of the coldest quarter |
ATG | 生长期平均气温* | Average air temperature of growth period* |
PG | 生长期降水量* | Precipitation of growth period* |
地区 Region | 面积百分比 Percentage of area (%) | 面积 Area (km2) | |||||
---|---|---|---|---|---|---|---|
适宜生境 Suitable habitat | 低适宜生境 Marginally suitable habitat | 不适宜生境 Unsuitable habitat | 适宜生境 Suitable habitat | 低适宜生境 Marginally suitable habitat | 不适宜生境Unsuitable habitat | ||
甘肃 Gansu | 20.28 | 15.13 | 64.59 | 92 152.32 | 68 750.72 | 293 496.97 | |
四川 Sichuan | 18.39 | 26.58 | 55.03 | 88 529.46 | 127 956.12 | 264 914.42 | |
西藏东部 Eastern Xizang | 16.91 | 19.47 | 63.62 | 75 533.50 | 86 968.49 | 284 177.48 | |
青海 Qinghai | 7.22 | 10.66 | 82.12 | 52 150.06 | 76 997.18 | 593 152.75 | |
宁夏 Ningxia | 13.32 | 22.09 | 64.59 | 8 844.48 | 14 667.76 | 42 887.76 | |
云南 Yunnan | 1.54 | 12.22 | 86.24 | 5 902.82 | 46 839.26 | 330 557.91 | |
陕西 Shaanxi | 0.10 | 7.57 | 92.33 | 205.60 | 15 563.92 | 189 830.49 | |
总计 Total | 11.71 | 15.86 | 72.43 | 323 318.24 | 437 743.45 | 1 999 017.78 |
表2 研究区各省、自治区桃儿七不同等级适生区面积及其百分比
Table 2 Areas and percentage of areas of habitat suitability distribution of Sinopodophyllum hexandrum in different provinces and autonomous regions
地区 Region | 面积百分比 Percentage of area (%) | 面积 Area (km2) | |||||
---|---|---|---|---|---|---|---|
适宜生境 Suitable habitat | 低适宜生境 Marginally suitable habitat | 不适宜生境 Unsuitable habitat | 适宜生境 Suitable habitat | 低适宜生境 Marginally suitable habitat | 不适宜生境Unsuitable habitat | ||
甘肃 Gansu | 20.28 | 15.13 | 64.59 | 92 152.32 | 68 750.72 | 293 496.97 | |
四川 Sichuan | 18.39 | 26.58 | 55.03 | 88 529.46 | 127 956.12 | 264 914.42 | |
西藏东部 Eastern Xizang | 16.91 | 19.47 | 63.62 | 75 533.50 | 86 968.49 | 284 177.48 | |
青海 Qinghai | 7.22 | 10.66 | 82.12 | 52 150.06 | 76 997.18 | 593 152.75 | |
宁夏 Ningxia | 13.32 | 22.09 | 64.59 | 8 844.48 | 14 667.76 | 42 887.76 | |
云南 Yunnan | 1.54 | 12.22 | 86.24 | 5 902.82 | 46 839.26 | 330 557.91 | |
陕西 Shaanxi | 0.10 | 7.57 | 92.33 | 205.60 | 15 563.92 | 189 830.49 | |
总计 Total | 11.71 | 15.86 | 72.43 | 323 318.24 | 437 743.45 | 1 999 017.78 |
图3 影响研究区桃儿七地理分布的主导气候因子与桃儿七存在概率的关系。
Fig. 3 Probability relationships between dominant climate factors and geographical distribution of Sinopodophullum hexandrum.
气候变化情景 Climate change scenario | 年 Year | 年降水量范围 Range of annual precipitation (mm) | 年降水量 Annual precipitation (mm) | 年平均气温范围 Range of annual mean air temperature (℃) | 年平均气温(℃) Annual mean air temperature |
---|---|---|---|---|---|
当前 Current | 1950-2000 | 16 - 4 107 | 596.41 | -16.2 - 25.1 | 5.2 |
A1B气候情景 SRES-A1B | 2020-2029 | 30 - 4 233 | 591.90 | -15.3 - 25.8 | 6.2 |
2050-2059 | 47 - 4 285 | 642.52 | -14.4 - 26.9 | 7.2 | |
2080-2089 | 46 - 4 337 | 684.50 | -13.3 - 27.8 | 8.1 | |
A2气候情景 SRES-A2 | 2020-2029 | 20 - 4 200 | 584.86 | -15.3 - 26.0 | 6.2 |
2050-2059 | 46 - 4 239 | 638.94 | -14.4 - 26.6 | 7.0 | |
2080-2089 | 56 - 4 284 | 666.36 | -12.8 - 28.0 | 8.6 | |
B1气候情景 SRES-B1 | 2020-2029 | 41 - 4 213 | 587.04 | -15.2 - 26.0 | 6.1 |
2050-2059 | 38 - 4 241 | 614.68 | -14.9 - 26.3 | 6.6 | |
2080-2089 | 53 - 4 291 | 640.00 | -14.1 - 26.8 | 7.2 |
表3 不同气候变化情景下研究区年降水量与年平均气温的变化
Table 3 Changes in annual precipitation and annual mean air temperature under different climate change scenarios in study area
气候变化情景 Climate change scenario | 年 Year | 年降水量范围 Range of annual precipitation (mm) | 年降水量 Annual precipitation (mm) | 年平均气温范围 Range of annual mean air temperature (℃) | 年平均气温(℃) Annual mean air temperature |
---|---|---|---|---|---|
当前 Current | 1950-2000 | 16 - 4 107 | 596.41 | -16.2 - 25.1 | 5.2 |
A1B气候情景 SRES-A1B | 2020-2029 | 30 - 4 233 | 591.90 | -15.3 - 25.8 | 6.2 |
2050-2059 | 47 - 4 285 | 642.52 | -14.4 - 26.9 | 7.2 | |
2080-2089 | 46 - 4 337 | 684.50 | -13.3 - 27.8 | 8.1 | |
A2气候情景 SRES-A2 | 2020-2029 | 20 - 4 200 | 584.86 | -15.3 - 26.0 | 6.2 |
2050-2059 | 46 - 4 239 | 638.94 | -14.4 - 26.6 | 7.0 | |
2080-2089 | 56 - 4 284 | 666.36 | -12.8 - 28.0 | 8.6 | |
B1气候情景 SRES-B1 | 2020-2029 | 41 - 4 213 | 587.04 | -15.2 - 26.0 | 6.1 |
2050-2059 | 38 - 4 241 | 614.68 | -14.9 - 26.3 | 6.6 | |
2080-2089 | 53 - 4 291 | 640.00 | -14.1 - 26.8 | 7.2 |
图4 不同气候变化情景下桃儿七生境适应性分布。A, A1B气候情景下21世纪20年代。B, A1B气候情景下21世纪50年代。C, A1B气候情景下21世纪80年代。D, A2气候情景下21世纪20年代。E, A2气候情景下21世纪50年代。F, A2气候情景下21世纪80年代。G, B1气候情景下21世纪20年代。H, B1气候情景下21世纪50年代。I, B1气候情景下21世纪80年代。SRES-A1B、SRES-A2和SRES-B1是来自政府间气候变化专门委员会(IPCC)发表的未来气候变化情景中的A1B、A2和B1气候情景。
Fig. 4 Distribution of habitat suitability for Sinopodophyllum hexandrum under different climate change scenarios. A, 2020s in A1B climate scenario. B, 2050s in A1B climate scenario. C, 2080s in A1B climate scenario. D, 2020s in A2 climate scenario. E, 2050s in A2 climate scenario. F, 2080s in A2 climate scenario. G, 2020s in B1 climate scenario. H, 2050s in B1 climate scenario. I, 2080s in B1 climate scenario. SRES-A1B, SRES-A2 and SRES-B1 refer to the three climate scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change).
图5 不同气候变化情景下研究区桃儿七各种适生区面积百分比。SRES-A1B、SRES-A2和SRES-B1是来自政府间气候变化专门委员会(IPCC)发表的未来气候变化情景中的A1B、A2和B1气候情景。
Fig. 5 Percentage of areas of varying habitat suitability of Sinopodophyllum hexandrum under different climate change scenarios in the study area. SRES-A1B, SRES-A2 and SRES-B1 refer to the three climate scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change).
气候变化情景 Climate change scenarios | 时间 Time | 海拔范围 Range of elevation (m) | 平均海拔 Average elevation (m) | 经度范围 Range of longitude (°) | 纬度范围 Range of latitude (°) |
---|---|---|---|---|---|
当前 Current | 1950-2000 | 1 311-4 530 | 3 123 | 90.88-106.83 | 26.96-38.48 |
SRES-A1B | 2020-2029 | 1 785-4 270 | 3 290 | 92.94-107.25 | 27.17-38.67 |
2050-2059 | 1 593-5 087 | 3 500 | 90.80-106.83 | 26.87-38.45 | |
2080-2089 | 1 982-4 870 | 3 789 | 89.67-105.42 | 27.18-38.34 | |
SRES-A2 | 2020-2029 | 1 700-5 281 | 3 143 | 92.81-107.52 | 28.20-38.38 |
2050-2059 | 1 920-5 202 | 3 421 | 90.80-104.93 | 27.11-39.16 | |
2080-2089 | 1 570-5 669 | 4 016 | 89.67-106.19 | 27.10-38.42 | |
SRES-B1 | 2020-2029 | 1 350-5 225 | 3 219 | 90.39-108.60 | 27.21-38.46 |
2050-2059 | 1 340-4 912 | 3 347 | 92.09-107.61 | 26.28-38.67 | |
2080-2089 | 1 667-5 429 | 3 576 | 90.80-106.59 | 24.07-39.03 |
表4 1950 -2089年不同气候变化情景下桃儿七适宜生境范围与海拔变化
Table 4 Changes in habitat range and elevation suitable for distribution of Sinopodophyllum hexandrum from 1950 to 2089 under different climate change scenarios
气候变化情景 Climate change scenarios | 时间 Time | 海拔范围 Range of elevation (m) | 平均海拔 Average elevation (m) | 经度范围 Range of longitude (°) | 纬度范围 Range of latitude (°) |
---|---|---|---|---|---|
当前 Current | 1950-2000 | 1 311-4 530 | 3 123 | 90.88-106.83 | 26.96-38.48 |
SRES-A1B | 2020-2029 | 1 785-4 270 | 3 290 | 92.94-107.25 | 27.17-38.67 |
2050-2059 | 1 593-5 087 | 3 500 | 90.80-106.83 | 26.87-38.45 | |
2080-2089 | 1 982-4 870 | 3 789 | 89.67-105.42 | 27.18-38.34 | |
SRES-A2 | 2020-2029 | 1 700-5 281 | 3 143 | 92.81-107.52 | 28.20-38.38 |
2050-2059 | 1 920-5 202 | 3 421 | 90.80-104.93 | 27.11-39.16 | |
2080-2089 | 1 570-5 669 | 4 016 | 89.67-106.19 | 27.10-38.42 | |
SRES-B1 | 2020-2029 | 1 350-5 225 | 3 219 | 90.39-108.60 | 27.21-38.46 |
2050-2059 | 1 340-4 912 | 3 347 | 92.09-107.61 | 26.28-38.67 | |
2080-2089 | 1 667-5 429 | 3 576 | 90.80-106.59 | 24.07-39.03 |
图6 不同气候变化情景下桃儿七分布区重心与其移动轨迹变化。SRES-A1B、SRES-A2和SRES-B1是来自政府间气候变化专门委员会(IPCC)发表的未来气候变化情景中的A1B、A2和B1气候情景。
Fig. 6 Changes in gravity center of distribution area of Sinopodophyllum hexandrum and its moving trajectory under different climate change scenarios. SRES-A1B, SRES-A2 and SRES-B1 refer to the three climate scenarios described in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC).
[1] | Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011). Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. |
[2] | Austin MP, van Niel KP (2011). Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38, 1-8. |
[3] | Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, Ruffray Pde, Vidal C, Pierrat JC, Gégout JC (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479, 517-520. |
[4] | Bertrand R, Perez V, Gégout JC (2012). Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology, 18, 2648-2660. |
[5] | Dang HS, Jiang MX, Zhang QF, Zhang YJ (2007). Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. Forest Ecology and Management, 240, 143-150. |
[6] | Ding YH, Ren GY, Shi GY, Guan P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006). National assessment report of climate change (I): climate change in China and its future trend. Advances in Climate Change Research, 2, 3-8. (in Chinese with English abstract) |
[ 丁一汇, 任国玉, 石广玉, 官鹏, 郑循华, 翟盘茂, 张德二, 赵宗慈, 王绍武, 王会军, 罗勇, 陈德亮, 高学杰, 戴晓苏 (2006). 气候变化国家评估报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2, 3-8.] | |
[7] | Dormann CF (2011). Modelling species’ distributions. In: Jopp F ed. Modelling Complex Ecological Dynamics. Springer- Verlag, Berlin. |
[8] | Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, de Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegard E, Høistad F, Nogués-Bravo D, Normand S, Puscas M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330-2341. |
[9] | Faleiro FV, Machado RB, Loyola RD (2013). Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation, 158, 248-257. |
[10] | Gallagher RV, Hughes L, Leishman MR, Wilson PD (2010). Predicted impact of exotic vines on an endangered ecological community under future climate change. Biological Invasions, 12, 4049-4063. |
[11] | Guo YL, Gu W, Lu CY, Wei HY (2013). Deoxyschizandrin and γ-schizandrin content in wild Schisandra sphenanthera to determine potential distribution in Qinling Mountains. Chinese Bulletin of Botany, 48, 411-422. (in Chinese with English abstract) |
[ 郭彦龙, 顾蔚, 路春燕, 卫海燕 (2013). 基于五味子甲素与乙素的秦岭地区野生华中五味子的潜在空间分布. 植物学报, 48, 411-422.] | |
[12] | He QJ, Zhou GS (2012). The climatic suitability for maize cultivation in China. Chinese Science Bulletin, 57, 395-403. |
[ 何奇瑾, 周广胜 (2012). 我国玉米种植区分布的气候适宜性. 科学通报, 57, 267-275.] | |
[13] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[14] | Hu LL, Zhang HY, Qin L, Yan BQ (2012). Current distribution of Schisandra chinensis in China and its predicted responses to climate change. Chinese Journal of Applied Ecology, 23, 2445-2450. (in Chinese with English abstract) |
[ 胡理乐, 张海英, 秦岭, 闫伯前 (2012). 中国五味子分布范围及气候变化影响预测. 应用生态学报, 23, 2445-2450.] | |
[15] | IPCC (Intergovernmental Panel on Climate Change)(2007a). The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[16] | IPCC(Intergovernmental Panel on Climate Change)(2007b) Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] | Ji RP, Zhang YS, Jiang LX, Zhang SJ, Feng R, Chen PS, Wu JW, Mi N (2012). Effect of climate change on maize production in northeast China. Geographical Research, 31, 290-298. (in Chinese with English abstract) |
[ 纪瑞鹏, 张玉书, 姜丽霞, 张淑杰, 冯锐, 陈鹏狮, 武晋雯, 米娜 (2012). 气候变化对东北地区玉米生产的影响. 地理研究, 31, 290-298.] | |
[18] | Jin JX, Jiang H, Peng W, Zhang LJ, Lu XH, Xu JH, Zhang XY, Wang Y (2013). Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model.. Chinese Journal of Plant Ecology, 37, 631-640. (in Chinese with English abstract) |
[ 金佳鑫, 江洪, 彭威, 张林静, 卢学鹤, 徐建辉, 张秀英, 王颖 (2013). 基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响. 植物生态学报, 37, 631-640.] | |
[19] | Kumar P (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using MaxEnt modelling: limitations and challenges. Biodiversity and Conservation, 21, 1251-1266. |
[20] | Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brosse H (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771. |
[21] | Li XH, Tian HD, Wang Y, Li RQ, Song ZM, Zhang FC, Xu M, Li DM (2012). Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Regional Environmental Change, 13, 843-852. |
[22] | Li Y, Zhai SN, Qiu YX, Guo YP, Ge XJ, Comes HP (2011). Glacial survival east and west of the ‘Mekong-Salween Divide’ in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). Molecular Phylogenetics and Evolution, 59, 412-424. |
[23] | Liu HJ, Xu Y, Su GQ, Li CY, Wang L, Liu YJ (2004). Re-search progress in Sinopodophyllum emodi. Chinese Tra- ditional Herbal Drugs, 35(1), 98-100. (in Chinese with English abstract) |
[ 刘海军, 徐艳, 苏国庆, 李春燕, 王莉, 刘玉军 (2004). 桃儿七的研究进展. 中草药, 35(1), 98-100.] | |
[24] | Lu CY, Gu W, Dai AH, Wei HY (2012). Assessing habitat suitability based on geographic information system (GIS) and fuzzy: a case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecological Modelling, 242, 105-115. |
[25] | Lü JJ (2009). The Impacts of Climate Change on the Distribution of Rare or Endangered Species in China and Adaptation Strategies. Master degree dissertation, Chinese Research Academy of Environmental Sciences, Beijing. (in Chinese with English abstract) |
[ 吕佳佳 (2009). 气候变化对我国主要珍稀濒危物种分布影响及其适应对策研究. 硕士学位论文, 中国环境科学研究院, 北京.] | |
[26] | Nadeem M, Palni MS, Purohit AN, Pandey H, Nandi SK (2000). Propagation and conservation of Podophyllum hexandrum Royle: an important medicinal herb. Biological Conservation, 92, 121-129. |
[27] | Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Zhou D (2000). Special report on emissions scenarios. In: IPCC (Intergovernmental Panel on Climate Change) ed. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 595-600. |
[28] | Nix HA (1986). A biogeographic analysis of Australian elapid snakes. In: Longmore R ed. Atlas of Elapid Snakes of Australia. AGPS, Canberra. |
[29] | Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. |
[30] | Phillipsa SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190, 231-259. |
[31] | Pu ZZ, Zhang SQ, Bin JH, Dou XY, Guan HY, Cao X (2013). Impact of climate change on winter wheat yield in Ürümqi, Xinjiang. Journal of Northwest A&F University, 41(3), 1-9. (in Chinese with English abstract) |
[ 普宗朝, 张山清, 宾建华, 窦新英, 官恒瑞, 曹兴 (2013). 气候变化对乌鲁木齐市冬小麦产量的影响. 西北农林科技大学学报(自然科学版), 41(3), 1-9.] | |
[32] |
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
DOI URL |
[33] | Shmara KD, Singh BM, Shmara TR, Katoch M, Guleria S (2000). Molecular analysis of variability in Podophyllum hexandrum Royle―an endangered medicinal herb of northwestern Himalya. Plant Genetic Resources Newslet- ter, 124, 57-61. |
[34] | Tanaka N, Nakao K, Tsuyama I, Higa M, Nakazono E, Matsui T (2012). Predicting the impact of climate change on potential habitats of fir (Abies) species in Japan and on the East Asian continent. Procedia Environmental Sciences, 13, 455-466. |
[35] | Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004). Extinction risk from climate change. Nature, 427, 145-148. |
[36] | Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007a). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372. (in Chinese with English abstract) |
[ 王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007a). ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.] | |
[37] | Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007b). The Potential geographic distribution of Radopholus similis in China. Scientia Agricultura Sinica, 40, 1444-1449. |
[ 王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007b.) 相似穿孔线虫在中国的适生区预测. 中国农业科学, 40, 2502-2506.] | |
[38] | Wu JG (2010). Potential effects of climate change on the distribution of seven protected plants in China. Journal of Wuhan Botanical Research, 28, 437-452. (in Chinese with English abstract) |
[ 吴建国 (2010). 气候变化对7种保护植物分布的潜在影响. 武汉植物学研究, 28, 437-452.] | |
[39] | Wu JG (2011). Potential effects of climate change in future on the distributions of 7 desert plants in China. Arid Land Geography, 34, 70-85. (in Chinese with English abstract) |
[ 吴建国 (2011). 未来气候变化对7种荒漠植物分布的潜在影响. 干旱区地理, 34, 70-85.] | |
[40] | Xiao M (2006). Studies on Genetic Diversity of an Endangered Species, Sinopodophyllum hexandrum (Royle) Ying. PhD dissertation, Sichuan University, Chengdu. 2-15. (in Chinese with English abstract) |
[ 肖猛 (2006). 濒危植物桃儿七(Sinopodophyllum hexandrum (Royle) Ying)遗传多样性研究. 博士学位论文. 四川大学, 成都. 2-15.] | |
[41] | Xu ZY, Ma SB, Hu CP, Yang CY, Hu ZH (1997). The flora biology and its evolutionary significance of Sinopodophyllum hexandrum (Royle) Ying. Journal of Wuhan Botanical Research, 15, 223-227. (in Chinese with English abstract) |
[ 徐正尧, 马绍宾, 胡昌平, 杨彩云, 胡志浩 (1997). 桃儿七传粉生物学特性及其在进化上的意义. 武汉植物学研究, 15, 223-227.] | |
[42] | Ying JS (1979). On Dysosma Woodson and Sinopodophyllum Ying Gen. Nov. of the Berberidaceae. Acta Phytotaxionomica Sinica, 17, 15-23. (in Chinese with English abstract) |
[ 应俊生 (1979). 小檗科八角莲属和桃儿七属(新属)的研究. 植物分类学报, 17, 15-23.] | |
[43] | Zhang Y, Li J, Lin W, Qiang S (2011). Prediction of potential distribution area of Erigeron philadelphicus in China based on MaxEnt model. Chinese Journal of Applied Ecology, 22, 2970-2976. (in Chinese with English abstract) |
[ 张颖, 李君, 林蔚, 强胜 (2011). 基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测. 应用生态学报, 22, 2970-2976.] | |
[44] | Zhao JF, Liu X, Wang CH, Zhang ZW, Qin SY, Zhong GY (2011). Resources of survey in rare and endangered medicinal plant Sinopodophyllum emodi. China Journal of Chinese Materia Medica, 36, 1255-1260. (in Chinese with English abstract) |
[ 赵纪峰, 刘翔, 王昌华, 张植伟, 秦松云, 钟国跃 (2011). 珍稀濒危药用植物桃儿七的资源调查. 中国中药杂志, 36, 1255-1260.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19