植物生态学报 ›› 2014, Vol. 38 ›› Issue (11): 1166-1173.DOI: 10.3724/SP.J.1258.2014.00112
曹萍麟1,陆梅1,田昆1,2,*,吕思彤3,杨洪昇1,姚茜1,李丽萍2,岳海涛2
收稿日期:
2014-05-14
接受日期:
2014-09-07
出版日期:
2014-05-14
发布日期:
2014-11-17
通讯作者:
田昆
基金资助:
CAO Ping-Lin1,LU Mei1,TIAN Kun1,2,*,LÜ Si-Tong3,YANG Hong-Sheng1,YAO Xi1,LI Li-Ping2,YUE Hai-Tao2
Received:
2014-05-14
Accepted:
2014-09-07
Online:
2014-05-14
Published:
2014-11-17
Contact:
TIAN Kun
摘要:
将无干扰的原生沼泽作为对照, 运用比较法研究了纳帕海高原湿地不同干扰强度下形成的湿地利用类型, 即沼泽(无干扰)、沼泽化草甸(轻度干扰)、草甸(中度干扰)和垦后湿地(重度干扰) 4个湿地利用类型的碳氮含量及其分布格局, 揭示干扰对纳帕海不同湿地利用类型碳氮及土壤真菌分布的影响。研究表明: (1) 4个湿地利用类型上下层土壤有机质(SOM)、全氮(TN)、碳氮比(C:N)和pH值均有显著的差异性(p < 0.01), 并且随着干扰强度的增大, SOM和TN含量逐渐减少。(2)土壤真菌经PDA培养基培养后计数, 在同一湿地类型上层的真菌数量大于下层, 随着干扰强度的增加, 真菌的数量逐渐增加。相关性分析表明: 真菌的数量与pH值、SOM和TN呈极显著负相关, 与C:N呈显著正相关。(3)系统发育研究表明: 纳帕海湿地分布有土壤真菌Ascomycota、Basidiomycota和Zygomycota, 其中Ascomycota是优势类群, 在高原湿地土壤碳氮分解等物质循环过程中Ascomycota处于主导地位。
曹萍麟,陆梅,田昆,吕思彤,杨洪昇,姚茜,李丽萍,岳海涛. 纳帕海高原湿地不同干扰强度下土壤真菌的分布格局. 植物生态学报, 2014, 38(11): 1166-1173. DOI: 10.3724/SP.J.1258.2014.00112
CAO Ping-Lin,LU Mei,TIAN Kun,LÜ Si-Tong,YANG Hong-Sheng,YAO Xi,LI Li-Ping,YUE Hai-Tao. Soil fungi distribution patterns under different levels of disturbance in the wetland of Napahai Plateau. Chinese Journal of Plant Ecology, 2014, 38(11): 1166-1173. DOI: 10.3724/SP.J.1258.2014.00112
土壤理化指标 Soil physicochemical variable | 土层 Soil layer (cm) | 垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 草甸(中度干扰) Meadow (moderate disturbance) | 沼泽化草甸(轻度干扰) Swampy meadow (low disturbance) | 原生沼泽(无干扰) Marsh (non-disturbance) |
---|---|---|---|---|---|
有机质 Organic matter (g·kg-1) | 0-20 | 64.60 ± 6.38a | 72.52 ± 2.73b | 85.01 ± 2.06c | 90.98 ± 3.99d |
20-40 | 59.48 ± 2.82a | 73.74 ± 2.54b | 87.23 ± 0.85c | 92.12 ± 3.02d | |
全氮 Total nitrogen (g·kg-1) | 0-20 | 0.74 ± 0.01a | 1.15 ± 0.03b | 1.46 ± 0.02c | 2.51 ± 0.13d |
20-40 | 0.66 ± 0.03a | 0.84 ± 0.22a | 1.43 ± 0.09b | 1.95 ± 0.08c | |
碳氮比 C:N | 0-20 | 87.44 ± 8.70a | 62.87 ± 2.60b | 58.26 ± 2.11b | 36.26 ± 3.12b |
20-40 | 90.76 ± 7.43a | 29.77 ± 6.95b | 40.09 ± 2.13c | 47.31 ± 2.91d | |
pH值 pH value | 0-20 | 7.61 ± 0.29a | 5.65 ± 0.12b | 7.82 ± 0.16a | 7.84 ± 0.07a |
20-40 | 7.50 ± 0.20a | 6.97 ± 0.51b | 7.87 ± 0.23c | 7.91 ± 0.07c |
表1 纳帕海湿地4种不同利用类型土壤主要理化指标(平均值±标准误差)
Table 1 Values of soil physicochemical variables for the four wetland types in Napahai (mean ± SE)
土壤理化指标 Soil physicochemical variable | 土层 Soil layer (cm) | 垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 草甸(中度干扰) Meadow (moderate disturbance) | 沼泽化草甸(轻度干扰) Swampy meadow (low disturbance) | 原生沼泽(无干扰) Marsh (non-disturbance) |
---|---|---|---|---|---|
有机质 Organic matter (g·kg-1) | 0-20 | 64.60 ± 6.38a | 72.52 ± 2.73b | 85.01 ± 2.06c | 90.98 ± 3.99d |
20-40 | 59.48 ± 2.82a | 73.74 ± 2.54b | 87.23 ± 0.85c | 92.12 ± 3.02d | |
全氮 Total nitrogen (g·kg-1) | 0-20 | 0.74 ± 0.01a | 1.15 ± 0.03b | 1.46 ± 0.02c | 2.51 ± 0.13d |
20-40 | 0.66 ± 0.03a | 0.84 ± 0.22a | 1.43 ± 0.09b | 1.95 ± 0.08c | |
碳氮比 C:N | 0-20 | 87.44 ± 8.70a | 62.87 ± 2.60b | 58.26 ± 2.11b | 36.26 ± 3.12b |
20-40 | 90.76 ± 7.43a | 29.77 ± 6.95b | 40.09 ± 2.13c | 47.31 ± 2.91d | |
pH值 pH value | 0-20 | 7.61 ± 0.29a | 5.65 ± 0.12b | 7.82 ± 0.16a | 7.84 ± 0.07a |
20-40 | 7.50 ± 0.20a | 6.97 ± 0.51b | 7.87 ± 0.23c | 7.91 ± 0.07c |
湿地类型 Wetland type | 土层 Soil layer (cm) | 平板菌落 No. of plate culture count | 菌落单元数(CFU·g-1)(平均值±标准误差) Numbers of colony-forming units (mean ± SE) |
---|---|---|---|
垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 0-20 | 23.30 | (23.30 ± 0.63) × 103a |
20-40 | 15.35 | (15.35 ± 0.20) × 103a | |
草甸(中度干扰) Meadow (moderate disturbance) | 0-20 | 15.98 | (15.98 ± 0.14) × 103b |
20-40 | 12.44 | (12.44 ± 0.21) × 103b | |
沼泽化草甸(轻度干扰) Swampy meadow (low disturbance) | 0-20 | 5.06 | (5.06 ± 0.11) × 103c |
20-40 | 2.72 | (2.72 ± 0.10) × 103c | |
原生沼泽(无干扰) Marsh (non-disturbance) | 0-20 | 1.79 | (1.79 ± 0.06) × 103d |
20-40 | 1.00 | (1.00 ± 0.08) × 103d |
表2 不同干扰强度下纳帕海湿地土壤的菌落单元总量
Table 2 Total quantity of colony-forming units in Napahai wetland under different levels of disturbance
湿地类型 Wetland type | 土层 Soil layer (cm) | 平板菌落 No. of plate culture count | 菌落单元数(CFU·g-1)(平均值±标准误差) Numbers of colony-forming units (mean ± SE) |
---|---|---|---|
垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 0-20 | 23.30 | (23.30 ± 0.63) × 103a |
20-40 | 15.35 | (15.35 ± 0.20) × 103a | |
草甸(中度干扰) Meadow (moderate disturbance) | 0-20 | 15.98 | (15.98 ± 0.14) × 103b |
20-40 | 12.44 | (12.44 ± 0.21) × 103b | |
沼泽化草甸(轻度干扰) Swampy meadow (low disturbance) | 0-20 | 5.06 | (5.06 ± 0.11) × 103c |
20-40 | 2.72 | (2.72 ± 0.10) × 103c | |
原生沼泽(无干扰) Marsh (non-disturbance) | 0-20 | 1.79 | (1.79 ± 0.06) × 103d |
20-40 | 1.00 | (1.00 ± 0.08) × 103d |
全氮 Total nitrogen | 有机质 Organic matter | 碳氮比 C:N | 真菌数量 No. of fungi | pH | |
---|---|---|---|---|---|
全氮 Total nitrogen | 1 | ||||
有机质 Organic matter | 0.852** | 1 | |||
碳氮比 C:N | -0.932** | -0.772** | 1 | ||
真菌数量 No. of fungi | -0.887** | -0.936* | 0.893** | 1 | |
pH | 0.344* | 0.358* | -0.150 | -0.382* | 1 |
表3 不同干扰强度下纳帕海湿地0-20 cm土层土壤理化指标与真菌数量相关系数矩阵
Table 3 Matrix of correlation coefficients among soil physicochemical variables and fungal number in the 0-20 cm soil layer of Napahai wetland
全氮 Total nitrogen | 有机质 Organic matter | 碳氮比 C:N | 真菌数量 No. of fungi | pH | |
---|---|---|---|---|---|
全氮 Total nitrogen | 1 | ||||
有机质 Organic matter | 0.852** | 1 | |||
碳氮比 C:N | -0.932** | -0.772** | 1 | ||
真菌数量 No. of fungi | -0.887** | -0.936* | 0.893** | 1 | |
pH | 0.344* | 0.358* | -0.150 | -0.382* | 1 |
全氮 Total nitrogen | 有机质 Organic matter | 碳氮比 C:N | 真菌数量 No. of fungi | pH | |
---|---|---|---|---|---|
全氮 Total nitrogen | 1 | ||||
有机质 Organic matter | 0.721** | 1 | |||
碳氮比 C:N | -0.426** | 0.301 | 1 | ||
真菌数量 No. of fungi | -0.940** | -0.631** | 0.484** | 1 | |
pH | 0.669** | 0.693** | 0.074 | -0.620** | 1 |
表4 不同干扰强度下纳帕海湿地20-40 cm土层土壤理化指标与真菌数量相关系数矩阵
Table 4 Matrix of correlation coefficients among soil physicochemical variables and fungal number in the 20-40 cm soil layer of Napahai
全氮 Total nitrogen | 有机质 Organic matter | 碳氮比 C:N | 真菌数量 No. of fungi | pH | |
---|---|---|---|---|---|
全氮 Total nitrogen | 1 | ||||
有机质 Organic matter | 0.721** | 1 | |||
碳氮比 C:N | -0.426** | 0.301 | 1 | ||
真菌数量 No. of fungi | -0.940** | -0.631** | 0.484** | 1 | |
pH | 0.669** | 0.693** | 0.074 | -0.620** | 1 |
多样性指标 Diversity index | 公式 Fomula | 土层 Soil layer (cm) | 垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 草甸(中度干扰) Meadow (moderate disturbance) | 沼泽化草甸(轻度干扰) Swampy meadow (low-disturbance) | 原生沼泽(无干扰) Marsh (non-disturbance) |
---|---|---|---|---|---|---|
Chao 1 | Schloss & Handels- man, 2005 | 0-20 | 34.14 | 23.20 | 10.00 | 8.00 |
20-40 | 23.60 | 16.00 | 8.50 | 8.50 | ||
ACE | Schloss & Handels- man, 2005 | 0-20 | 34.89 | 24.88 | 10.85 | 12.00 |
20-40 | 27.43 | 17.47 | 8.91 | 8.85 | ||
Shannon (H′) | ![]() | 0-20 | 3.10 | 2.67 | 2.03 | 1.73 |
20-40 | 2.44 | 2.23 | 1.84 | 1.94 | ||
Simpson (D) | | 0-20 | 0.05 | 0.07 | 0.11 | 0.07 |
20-40 | 0.12 | 0.08 | 0.11 | 0.12 |
表5 不同干扰强度纳帕海湿地土壤真菌的多样性指数
Table 5 Fungal diversity index under different levels of disturbance in Napahai wetland
多样性指标 Diversity index | 公式 Fomula | 土层 Soil layer (cm) | 垦后湿地(重度干扰) Cultivated wetland (high disturbance) | 草甸(中度干扰) Meadow (moderate disturbance) | 沼泽化草甸(轻度干扰) Swampy meadow (low-disturbance) | 原生沼泽(无干扰) Marsh (non-disturbance) |
---|---|---|---|---|---|---|
Chao 1 | Schloss & Handels- man, 2005 | 0-20 | 34.14 | 23.20 | 10.00 | 8.00 |
20-40 | 23.60 | 16.00 | 8.50 | 8.50 | ||
ACE | Schloss & Handels- man, 2005 | 0-20 | 34.89 | 24.88 | 10.85 | 12.00 |
20-40 | 27.43 | 17.47 | 8.91 | 8.85 | ||
Shannon (H′) | ![]() | 0-20 | 3.10 | 2.67 | 2.03 | 1.73 |
20-40 | 2.44 | 2.23 | 1.84 | 1.94 | ||
Simpson (D) | | 0-20 | 0.05 | 0.07 | 0.11 | 0.07 |
20-40 | 0.12 | 0.08 | 0.11 | 0.12 |
1 |
Anderson IC, Campbell CD, Prosser JI ( 2003). Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology, 5, 36-47.
DOI URL |
2 |
Bazzaz FA, Williams WE ( 1991). Atmospheric CO2 concentrations within a mixed forest: implications for seedling growth. Ecology, 72, 12-16.
DOI URL |
3 |
Billings SA, Ziegler SE ( 2005). Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biology, 11, 203-212.
DOI URL |
4 | Guo XL, Tian K, Ge XX, Lai JD ( 2012). Distribution of organic carbon density and carbon storage in plateau wetland soils in Napahai. Journal of Soil and Water Conservation, 26(4), 159-162. (in Chinese with English abstract) |
郭雪莲, 田昆, 葛潇霄, 赖建东 ( 2012). 纳帕海高原湿地土壤有机碳密度及碳储量特征. 水土保持学报, 26(4), 159-162. | |
5 | He YM, Zhang RS, Zhang LH, Xie KZ ( 2007). Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils. Acta Ecologica Sinica, 27, 113-119. (in Chinese with English abstract) |
何玉梅, 张仁陟, 张丽华, 解开治 ( 2007). 不同耕作措施对土壤真菌群落结构与生态特征的影响. 生态学报, 27, 113-119. | |
6 | Institute of Soil Science, Chinese Academy of Sciences ( 1978). The Soil Physical and Chemical Analysis Manual. Shanghai Science and Technology Press, Shanghai. 62-140. (in Chinese) |
中国科学院南京土壤研究所 ( 1978). 土壤理化分析手册. 上海科学技术出版社, 上海. 62-140. | |
7 | Institute of Soil Science, Chinese Academy of Sciences(1985). The Soil Microbial Research. Science Press, Beijing. 40-50. (in Chinese) |
8 | [ 中国科学院南京土壤研究所 ( 1985). 土壤微生物研究法. 科学出版社, 北京. 40-50. |
9 | Jiang CS, Hao QJ, Song CC, Hu BQ ( 2010). Effects of marsh reclamation on soil respiration in the Sanjiang plain. Acta Ecologica Sinica, 30, 4539-4548. (in Chinese with English abstract) |
江长胜, 郝庆菊, 宋长春, 胡必琴 ( 2010). 垦殖对沼泽湿地土壤呼吸速率的影响. 生态学报, 30, 4539-4548. | |
10 |
Kumar S, Tamura K, Nei M ( 2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150-163.
DOI URL |
11 |
Liu Q, Yang XJ, Zhu JG, Zhao JL, Yu HZ ( 2008). Flock of black-necked crane wintering at Napahai Nature Reserve, China. Zoological Research, 29, 553-560. (in Chinese with English abstract)
DOI URL |
刘强, 杨晓君, 朱建国, 赵健林, 余红忠 ( 2008). 云南省纳帕海自然保护区越冬黑颈鹤的集群特征. 动物学研究, 29, 553-560.
DOI URL |
|
12 | Liu Y, Liu YH, Li F, Chen ZS, Lian J, Luo WJ, Huang X, Zhong YC ( 2004). A broad-spectrum organophosphorus hydrolase from Fungus. Acta Scientiarum Naturalium Universitatis Sunyatseni, 43(2), 76-80. (in Chinese with English abstract) |
刘阳, 刘玉焕, 李方, 陈志仕, 廉婕, 罗维佳, 黄晓, 钟英长 ( 2004). 广谱降解有机磷农药的真菌酶解研究. 中山大学学报(自然科学版), 43(2), 76-80. | |
13 |
Pan H, Yu JF, Wu YM, Zhang TY, Wang HF ( 2008). Diversity analysis of soil dematiaceous Hyphomycetes from the Yellow river source area: I. Journal of Zhejiang University Science B, 9, 829-834.
DOI URL |
14 | Peng HY, Xu J, Wang Y, Yu L ( 2012). Advances in the diversity of marine fungi in Mangrove Wetlands. Journal of Fungal Research, 10, 266-270. (in Chinese with English abstract) |
彭红艳, 徐婧, 王燕, 于莉 ( 2012). 红树林湿地海洋真菌多样性研究进展. 菌物研究, 10, 266-270. | |
15 |
Qiao YM, Wang ZQ, Duan ZH ( 2009). Effects of different land-use types on soil carbon and nitrogen contents in the northern region of Qinghai Lake. Acta Prataculturae Sinica, 18(6), 105-112. (in Chinese with English abstract)
DOI URL |
乔有明, 王振群, 段中华 ( 2009). 青海湖北岸土地利用方式对土壤碳氮含量的影响. 草业学报, 18(6), 105-112.
DOI URL |
|
16 |
Schloss PD, Handelsman J ( 2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71, 1501-1506.
DOI URL |
17 |
Song CC, Wang YY, Yan BX, Lou YJ, Zhao ZC ( 2004). The changes of the soil hydrothermal condition and the dynamics of C, N after the Mire Tillage. Environmental Science, 25(3), 150-154. (in Chinese with English abstract)
DOI URL |
宋长春, 王毅勇, 阎百兴, 娄彦景, 赵志春 ( 2004). 沼泽湿地开垦后土壤水热条件变化与碳、氮动态. 环境科学, 25(3), 150-154.
DOI URL |
|
18 |
Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM ( 2002). Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry, 34, 1599-1611.
DOI URL |
19 | Tang YS, Wei CF, Yan TM, Yang LZ, Ci E ( 2007). Biological indicator of soil quality: a review. Soils, 39, 157-163. (in Chinese) |
唐玉姝, 魏朝富, 颜廷梅, 杨林章, 慈恩 ( 2007). 土壤质量生物学指标研究进展. 土壤, 39, 157-163. | |
20 | Tian K, Chang FL, Lu M, Mo JF, Yang YX ( 2004). Impacts of human disturbances on organic carbon and nitrogen in Napahai wetlands, Northwest Yunnan. Acta Pedologica Sinica, 41, 686-698. (in Chinese with English abstract) |
田昆, 常凤来, 陆梅, 莫剑锋, 杨永兴 ( 2004). 人为活动对云南纳帕海湿地土壤碳氮变化的影响. 土壤学报, 41, 681-686. | |
21 |
Treseder KK, Holden SR ( 2013). Fungal carbon sequestration. Science, 339, 1528-1529.
DOI URL |
22 | Wang D, Ma FY, Yao XF, Xin H, Song X, Zhang ZX ( 2012). Properties of soil microbes, nutrients and soil enzyme activities and their relationship in a degraded wetland of Yellow River Delta. Science of Soil and Water Conservation, 10(5), 94-98. (in Chinese with English abstract) |
王笛, 马风云, 姚秀粉, 辛贺, 宋雪, 张钟心 ( 2012). 黄河三角洲退化湿地土壤养分, 微生物与土壤酶特性及其关系分析. 中国水土保持科学, 10(5), 94-98. | |
23 | Xiao DR, Tian K, Zhang LQ ( 2008). Relationship between plant diversity and soil fertility in Napahai wetland of Northwestern Yunnan plateau. Acta Ecologica Sinica, 28, 3116-3124. (in Chinese with English abstract) |
肖德荣, 田昆, 张利权 ( 2008). 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系. 生态学报, 28, 3116-3124. | |
24 | Xu GH, Zheng HY ( 1986). Soil Microbial Analysis Method Manual. China Agriculture Press. Beijing. 1-70. (in Chinese) |
许光辉, 郑洪元 ( 1986). 土壤微生物分析方法手册. 中国农业出版社, 北京. 1-70. | |
25 | Xu HF, Liu XT, Bai JH ( 2004). Dynamic change and environmental effects of soil microorganism in marsh soils from Carex Meyeriana wetlands in Changbai mountain. Journal of Soil and Water Conservation, 18(3), 115-117. (in Chinese with English abstract) |
徐惠风, 刘兴土, 白军红 ( 2004). 长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究. 水土保持学报, 18(3), 115-117. | |
26 |
Zeng FF, Zhang TQ, Xu HS, Tai C, Xing ML, Zhao MJ ( 2009). Number of microbes and its biodiversity in soil of Riparian wetland. Environmental Science & Technology, 32(10), 13-18. (in Chinese with English abstract)
DOI URL |
曾繁富, 赵同谦, 徐华山, 邰超, 邢梦林, 赵明杰 ( 2009). 滨河湿地土壤微生物数量及多样性研究. 环境科学与技术, 32(10), 13-18.
DOI URL |
|
27 | Zhang CB, Jin ZX, Shi SD ( 2003). Microflora and microbial quotient (qMB, qCO2) values of soils in different forest types on Tiantai mountain in Zhejiang. Chinese Journal of Ecology, 22(2), 28-31. (in Chinese with English abstract) |
17) 张崇邦, 金则新, 施时迪 ( 2003). 天台山不同林型土壤微生物区系及其商值(qMB, qCO2). 生态学杂志, 22(2), 28-31. | |
28 | Zhang K, Tian K, Lü XG, Luo S, Li JY, Li NY ( 2009). Impacts of tourism on water storage and regulation of meadow soil in Napahai lakeshore wetlands. Advances in Water Science, 20, 800-805. (in Chinese with English abstract) |
18) 张昆, 田昆, 吕宪国, 罗姗, 李吉玉, 李宁云 ( 2009). 旅游干扰对纳帕海湖滨草甸湿地土壤水文调蓄功能的影响. 水科学进展, 20, 800-805. | |
29 | Zhang YG, Zhang XQ, Qu LJ, Xiao Y ( 2007). The impact of land use changes on soil fungal community structure. Acta Ecologica Sinica, 27, 4325-4332. (in Chinese with English abstract) |
张于光, 张小全, 曲良建, 肖烨 ( 2007). 土地利用变化对土壤真菌群落结构的影响. 生态学报, 27, 4325-4332. | |
30 | Zhao XL, Zhou GS, Zhou L, Lü GH, Jia QY, Xie YB ( 2006). The characteristics of soil microbe in Panjin reed wetland. Journal of Meteorology and Environment, 22(4), 64-67. (in Chinese with English abstract) |
20) 赵先丽, 周广胜, 周莉, 吕国红, 贾庆宇, 谢艳兵 ( 2006). 盘锦芦苇湿地土壤微生物特征分析. 气象与环境学报, 22(4), 64-67. | |
31 | Zhou ZC, Shangguan ZP ( 2005). Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance. Chinese Journal of Applied Ecology, 16, 1586-1590. (in Chinese with English abstract) |
周正朝, 上官周平 ( 2005). 人为干扰下子午岭次生林土壤生态因子动态变化. 应用生态学报, 16, 1586-1590. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[5] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[6] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[7] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[8] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[9] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[10] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[11] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[12] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[13] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[14] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[15] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19