植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 985-993.DOI: 10.3773/j.issn.1005-264x.2008.05.002
收稿日期:
2007-09-10
接受日期:
2008-03-21
出版日期:
2008-09-10
发布日期:
2008-09-30
通讯作者:
曹坤芳
作者简介:
*(caokf@xtbg.ac.cn)基金资助:
ZHU Jun-Jie1,2, CAO Kun-Fang1,*()
Received:
2007-09-10
Accepted:
2008-03-21
Online:
2008-09-10
Published:
2008-09-30
Contact:
CAO Kun-Fang
摘要:
为探讨我国西南干热河谷这一严酷生境中植物抗氧化系统对多种胁迫因子的响应机制, 以该地区最干热的元江河谷萨王纳植被中光合能力有明显差异的两个优势种——常绿的毛枝青冈(Cyclobalanopsis helferiana)和干热季落叶的三叶漆(Terminthia paniculata)为材料, 研究了其抗氧化系统活性在高温雨季、干凉季和干热季的变化规律。结果表明: 从总体上看两树种抗氧化系统在干凉季活性最高, 然而, 两树种谷胱甘肽转移酶和谷胱甘肽过氧化物酶都在随后的干热季特异表达。两树种主要非酶抗氧化物质——抗坏血酸(ASC)和谷胱甘肽库容量与水-水循环起端酶超氧化物歧化酶(SOD)活性差异不大, 但光合速率低的三叶漆水-水循环和抗坏血酸-谷胱甘肽循环其它酶活性显著高于光合强的毛枝青冈。三叶漆抗氧化系统比毛枝青冈启动积极, 但后者有更持久的抗氧化能力。与其它逆境中植物相比, 两树种有更发达的抗氧化系统, 故能始终保持相对低的丙二醛含量。
朱俊杰, 曹坤芳. 元江干热河谷毛枝青冈和三叶漆抗氧化系统季节变化. 植物生态学报, 2008, 32(5): 985-993. DOI: 10.3773/j.issn.1005-264x.2008.05.002
ZHU Jun-Jie, CAO Kun-Fang. SEASONAL CHANGES IN THE FOLIAR ANTIOXIDANT SYSTEMS IN CYCLOBALANOPSIS HELFERIANA AND TERMINTHIA PANICULATA IN THE HOT-DRY VALLEY OF THE YUANJIANG RIVER, CHINA. Chinese Journal of Plant Ecology, 2008, 32(5): 985-993. DOI: 10.3773/j.issn.1005-264x.2008.05.002
月/年 Month/year | 月降水 Monthly rainfall (mm) | 月最低温 Monthly minimum temperature (℃) | 月均温度 Monthly mean temperature (℃) | 月最高温 Monthly maximum temperature (℃) |
---|---|---|---|---|
01/2003 02/2003 03/2003 04/2003 05/2003 06/2003 07/2003 08/2003 09/2003 10/2003 11/2003 12/2003 01/2004 02/2004 03/2004 | 67.8 5.9 37.1 10.0 66.8 141.6 136.4 121.8 48.8 36.6 0 11.8 19.4 7.6 5.4 | 6.5 9.6 12.1 16.3 20.2 22.1 23.3 22.8 18.3 17.8 11.1 9.2 6.4 6.7 11.1 | 16.1 19.1 22.5 27.3 28.9 28.2 29.3 28.4 26.5 25.6 21.1 19.0 16.6 19.1 23.5 | 30.0 33.9 35.7 39.5 40.1 37.5 40.2 38.3 36.9 37.3 32.8 29.7 30.4 35.4 38.7 |
表1 元江干热河谷2003年1月至2004年3月降水和气温变化特征
Table 1 Monthly rainfall and temperature during the study period from January 2003 to March 2004
月/年 Month/year | 月降水 Monthly rainfall (mm) | 月最低温 Monthly minimum temperature (℃) | 月均温度 Monthly mean temperature (℃) | 月最高温 Monthly maximum temperature (℃) |
---|---|---|---|---|
01/2003 02/2003 03/2003 04/2003 05/2003 06/2003 07/2003 08/2003 09/2003 10/2003 11/2003 12/2003 01/2004 02/2004 03/2004 | 67.8 5.9 37.1 10.0 66.8 141.6 136.4 121.8 48.8 36.6 0 11.8 19.4 7.6 5.4 | 6.5 9.6 12.1 16.3 20.2 22.1 23.3 22.8 18.3 17.8 11.1 9.2 6.4 6.7 11.1 | 16.1 19.1 22.5 27.3 28.9 28.2 29.3 28.4 26.5 25.6 21.1 19.0 16.6 19.1 23.5 | 30.0 33.9 35.7 39.5 40.1 37.5 40.2 38.3 36.9 37.3 32.8 29.7 30.4 35.4 38.7 |
图1 干热河谷毛枝青冈和三叶漆叶片相对含水量、光合速率、电子传递量子效率、丙二醛和超氧产生速率的 季节变化 图中数据为平均值(n=4), 柱上方不同字母表示同一树种不同季节间差异显著(p<0.05) Means significantly different within each species (n=4) were labeled by different letters (p<0.05)
Fig. 1 Seasonal changes of relative water content, CO2 assimilation rate, quantum yield of photosynthetic electron transport, malondialdehyde (MDA) contents and superoxide (O2-· ) radical production rate inCyclobalanopsis helferiana (oak) and Terminthia paniculata (sumach) in the hot-dry valley of Yuanjiang River
图2 毛枝青冈和三叶漆抗坏血酸(ASC)、脱氢抗坏血酸(dASC)和谷胱甘肽含量(GSSG, 氧化型谷胱甘肽; GSH, 还原型谷胱甘肽)及转换状况的季节变化 图注同图1 Note see Fig. 1
Fig. 2 Seasonal changes of ASC, dASC, GSSG and GSH content, dASC/ASC and GSH/(GSH+GSSG) ratio in Cyclobalanopsis helferiana(oak) and Terminthia paniculata (sumach) in the hot-dry valley of Yuanjiang River
图3 毛枝青冈和三叶漆清除H2O2主要抗氧化酶的季节变化 图注同图1 Note see Fig. 1
Fig. 3 Seasonal changes of SOD, APX, CAT, POX activities in Cyclobalanopsis helferiana(oak) and Terminthia paniculata (sumach) in the hot-dry valley of Yuanjiang River
图4 毛枝青冈和三叶漆抗坏血酸和谷胱甘肽代谢抗氧化酶的季节变化 图注同图1 Note see Fig. 1
Fig. 4 Seasonal changes of DHAR, MDAR, GR, GP and GT activity in Cyclobalanopsis helferiana (oak) and Terminthia paniculata (sumach) in the hot-dry valley of Yuanjiang River
[1] | Aebi H (1984). Catalase in vitro. Method in Enzymology, 105,121-126. |
[2] | Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991). Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant and Cell Physiology, 32,691-697. |
[3] |
Asada K (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50,601-63.
URL PMID |
[4] |
Bradford MM (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72,248-254.
DOI URL PMID |
[5] | Cao KF, Guo YH, Cai ZQ (2006). Photosynthesis and antioxidant enzyme activity in breadfruit, jackfruit and mangosteen in southern Yunnan, China. Journal of Horticultural Science & Biotechnology, 81,168-172. |
[6] |
Elstner EF, Heupel A (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70,616-620.
DOI URL PMID |
[7] | Foyer CH, Noctor G (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28,1056-1071. |
[8] | Giannopolitis CN, Ries SK (1977). Superoxide dismutase. Ⅰ.Occurrence in higher plants. Plant Physiology, 113,1193-1201. |
[9] |
Grace SC, Logan BA (1996). Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiology, 112,1631-1640.
DOI URL PMID |
[10] |
Gupta AS, Webb RP, Holaday AS, Allen RD (1993). Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiology, 103,1067-1073.
URL PMID |
[11] | Hodges DM, DeLong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207,604-611. |
[12] | Huner NPA, Öquist G, Sarhan F (1998). Energy balance and acclimation to light and cold. Trends in Plant Science, 3,224-230. |
[13] | Jin ZZ (金振洲), Ou XK (欧晓昆) (2000). Vegetations in the Hot and Dry Valleys along the Yuanjiang, Nujiang, Jinshajiang, and Lancangjiang Rivers(元江、怒江、金沙江、澜沧江干热河谷植被). Yunnan University Press, Kunming, 1-297. (in Chinese) |
[14] |
Kocsy G, Galiba G, Brunold C (2001). Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiologia Plantarum, 113,158-164.
URL PMID |
[15] |
Light GG, Mahan JR, Roxas VP, Allen RD (2005). Transgenic cotton ( Gossypium hirsutum L.) seedlings expressing a tobacco glutathione s-transferase fail to provide improved stress tolerance. Planta, 222,346-354.
DOI URL PMID |
[16] | Li Y (李筠), Deng XP (邓西平), Kwak SS (郭尚洙), Tanaka K (田中净) (2006). Drought tolerance of transgenic sweet potato expressing both Cu/Zn superoxide dismutase and ascorbate peroxidase. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学报), 32,451-457. (in Chinese with English abstract) |
[17] |
Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119,1091-1099.
DOI URL PMID |
[18] |
Del Carmen Córdoba-Pedregosa M, Córdoba F, Villalba JM, González-Reyes JA (2003). Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiology, 131,697-706.
DOI URL PMID |
[19] | McKersie BD, Leshem YY (1994). Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands. |
[20] |
Müller-Moulé P, Patricia LC, Niyogi KK (2003). Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiology, 128,970-977.
DOI URL PMID |
[21] | Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22,867-880. |
[22] | Polle A, Otter T, Seifert F (1994). Apoplastic peroxidases and lignification in needles of norway spruce ( Picea abies L.). Plant Physiology, l06,53-60. |
[23] |
Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006). 2 gene expression reveals a link between responses to high light and drought tolerance. Plant, Cell and Environment, 29,269-281.
URL PMID |
[24] | Verhoeven AS, Annie S, Mai T, John W (2005). Seasonal changes in leaf antioxidant systems and xanthophyll cycle characteristics in Taxus×media growing in sun and shade environments. Physiologia Plantarum, 123,428-434. |
[25] | Volk S, Feierabend J (1989). Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant, Cell and Environment, 12,701-712. |
[26] | Yu SW (余叔文), Tang ZC (汤章城) (1998). Plant Physiology and Molecular Biology (植物生理与分子生物学). Science Press, Beijing, 366. (in Chinese) |
[1] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[3] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[4] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[5] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[6] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[7] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[8] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[9] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[10] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[11] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[12] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
[13] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[14] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[15] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19