植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 34-44.DOI: 10.3773/j.issn.1005-264x.2009.01.004
收稿日期:
2007-06-26
接受日期:
2007-10-16
出版日期:
2009-06-26
发布日期:
2009-01-30
通讯作者:
曹卫星
作者简介:
*E-mail: caow@njau.edu.cn基金资助:
FENG Wei, ZHU Yan, YAO Xia, TIAN Yong-Chao, CAO Wei-Xing*()
Received:
2007-06-26
Accepted:
2007-10-16
Online:
2009-06-26
Published:
2009-01-30
Contact:
CAO Wei-Xing
摘要:
生物量和叶面积指数(LAI)是描述作物长势的重要参数, 叶干重和LAI的实时动态监测对小麦(Triticum aestivum)生长诊断和管理调控具有重要意义。为分析多种高光谱参数估算小麦叶干重和LAI的效果, 建立小麦叶干重和LAI的定量监测模型, 该研究连续3年采用不同小麦品种进行不同施氮水平的大田试验, 于小麦不同生育期采集田间冠层高光谱数据并测定叶片叶干重和LAI。试验结果显示, 小麦叶干重和LAI随施氮水平的提高而增加, 随生育进程呈单峰动态变化模式。小麦叶干重和LAI与光谱反射率间相关性较好的区域主要位于红光波段(590~710 nm, r<-0.60)和近红外波段(745~1 130 nm, r>0.69)。对于不同试验条件下的叶干重和LAI, 可以使用统一的光谱参数进行定量反演, 其中基于RVI (810, 560)、FD755、GM1、SARVI (MSS)和TC3等光谱参数的方程拟合效果较好。经不同年际独立试验数据的检验表明, 以参数RVI (810, 560)、GM1、SARVI (MSS)、PSSRb、(R750-800/R695-740) -1、VOG2和MSR705为变量建立的叶干重和LAI监测模型均给出较好的检验结果。因此, 利用关键特征光谱参数可以有效地评价小麦叶片生长状况, 尤其是光谱参数RVI (810, 560)、GM1和SARVI (MSS)可以对不同条件下小麦叶干重和LAI进行准确可靠的监测。
冯伟, 朱艳, 姚霞, 田永超, 曹卫星. 基于高光谱遥感的小麦叶干重和叶面积指数监测. 植物生态学报, 2009, 33(1): 34-44. DOI: 10.3773/j.issn.1005-264x.2009.01.004
FENG Wei, ZHU Yan, YAO Xia, TIAN Yong-Chao, CAO Wei-Xing. MONITORING LEAF DRY WEIGHT AND LEAF AREA INDEX IN WHEAT WITH HYPERSPECTRAL REMOTE SENSING. Chinese Journal of Plant Ecology, 2009, 33(1): 34-44. DOI: 10.3773/j.issn.1005-264x.2009.01.004
光谱参数 Spectral parameter | 定义与算法 Definition and algorithm | 参考文献 Reference |
RVI | 两波段反射率比值 Ratio of reflectance at λ1 and λ2 Rλ1/Rλ2 | |
SARVI (MSS) | 基于MSS波段的土壤调整比值植被指数 Soil adjusted ratio vegetation indices on data from MSS MSS7/(MSS5+b/a) | |
TC3 | 穗帽变换第三分量 The third variable extracted using Tasseled Cap transformation -0.829MSS4+0.522MSS5-0.039MSS6+0.194MSS7 | |
GM1 | 750 nm与550 nm处反射率比值 Ratio of reflectance at 750 nm to reflectivity at 550 nm R750/R550 | |
VOG2 | 红边光谱比值植被指数 Red edge reflectance-ratio indices (R734-R747)/(R715+R726) | |
MSR705 | 修正SR705植被指数 Simple ratio indices modified on SR705 R750-R445/R705-R445 | |
PSSRb | Ratio of reflectance at 800 and 635 nm R800/R635 | |
(R750-800/R695-740)-1 | 宽波段695~740 nm反射率倒数与750~800 nm反射率组合指数 Broad spectral bands indice with reciprocal reflectance from 695 to 740 nm and reflectance from 750 to 800 nm (R750-800/R695-740)-1 | |
Dr/Db | 红边内一阶微分最大值与蓝边内一阶微分最大值的比值 Radio of the red edge amplitude and the blue edge amplitude Max (dR(λi)/dλi)/max (dR(λj)/dλj), i=680-760 nm, j=490-530 nm | |
SDr/SDb | 红边内一阶微分总和与蓝边内一阶微分总和的比值 Radio of the red-edge integral areas and the blue-edge integral areas $\sum\limits_{j=680}^{755}(R_{i+1}-R_{i-1})/2 / \sum\limits_{i=490}^{530}(R_{i+1}-R_{i-1})/2$ | |
MSR | 修正型简单比值指数 Modified simple ratio (Rλ1/Rλ2-1)/[(Rλ1/Rλ2)0.5-1] |
表1 本文采用的高光谱参数列表
Table 1 Summary of different hyperspectral parameters used in this study
光谱参数 Spectral parameter | 定义与算法 Definition and algorithm | 参考文献 Reference |
RVI | 两波段反射率比值 Ratio of reflectance at λ1 and λ2 Rλ1/Rλ2 | |
SARVI (MSS) | 基于MSS波段的土壤调整比值植被指数 Soil adjusted ratio vegetation indices on data from MSS MSS7/(MSS5+b/a) | |
TC3 | 穗帽变换第三分量 The third variable extracted using Tasseled Cap transformation -0.829MSS4+0.522MSS5-0.039MSS6+0.194MSS7 | |
GM1 | 750 nm与550 nm处反射率比值 Ratio of reflectance at 750 nm to reflectivity at 550 nm R750/R550 | |
VOG2 | 红边光谱比值植被指数 Red edge reflectance-ratio indices (R734-R747)/(R715+R726) | |
MSR705 | 修正SR705植被指数 Simple ratio indices modified on SR705 R750-R445/R705-R445 | |
PSSRb | Ratio of reflectance at 800 and 635 nm R800/R635 | |
(R750-800/R695-740)-1 | 宽波段695~740 nm反射率倒数与750~800 nm反射率组合指数 Broad spectral bands indice with reciprocal reflectance from 695 to 740 nm and reflectance from 750 to 800 nm (R750-800/R695-740)-1 | |
Dr/Db | 红边内一阶微分最大值与蓝边内一阶微分最大值的比值 Radio of the red edge amplitude and the blue edge amplitude Max (dR(λi)/dλi)/max (dR(λj)/dλj), i=680-760 nm, j=490-530 nm | |
SDr/SDb | 红边内一阶微分总和与蓝边内一阶微分总和的比值 Radio of the red-edge integral areas and the blue-edge integral areas $\sum\limits_{j=680}^{755}(R_{i+1}-R_{i-1})/2 / \sum\limits_{i=490}^{530}(R_{i+1}-R_{i-1})/2$ | |
MSR | 修正型简单比值指数 Modified simple ratio (Rλ1/Rλ2-1)/[(Rλ1/Rλ2)0.5-1] |
图1 不同施氮水平下小麦叶干重和LAI的变化 N9、Y34: 表示‘宁麦9号'和‘豫麦34' Denote Ningmai 9 and Yumai34 EXP.1、EXP.2: 表示试验1和试验2 Denote experiment one and experiment two N0、N1、N2和N3: 在试验1中为0, 90, 180, 270 kg N·hm-2;在试验2中为0, 75, 150, 225 kg N·hm-2 In EXP.1 is 0, 90, 180, 270 kg N·hm-2 and In EXP.2 is 0, 75, 150, 225 kg N·hm-2 DAA9 、DAA10、 DAA19、 DAA21、DAA25 和DAA28: 表示花后第9、10、19、21、25和28天 Denote the 9th, 10th, 19th, 21st, 25th and 28th day after anthesis, respectively
Fig. 1 Changes of leaf dry weight and leaf area index (LAI) in wheat under different N rates
图2 小麦冠层光谱反射率在不同氮素水平下的变化(A)及与叶干重(LW)和叶面积指数(LAI)的关系(B) 图注同图1 Notes see Fig. 1
Fig. 2 Changes of canopy reflectance under different N rates (A) and relationships of reflectance to leaf dry weight (LW) and leaf area index (LAI) (B) in wheat
光谱参数 Spectral parameter | 叶干重 Leaf dry weight | 叶面积指数 LAI | |||||
---|---|---|---|---|---|---|---|
回归方程 Equation | R2 | SE | 回归方程 Equation | R2 | SE | ||
RVI (810, 560) | y = 0.024 9x + 0.007 7 | 0.819 | 0.033 | y = 0.561 3x + 0.183 3 | 0.767 | 0.846 | |
FD755 | y = 0.609 2x + 0.054 6 | 0.817 | 0.033 | y = 13.957x + 1.212 | 0.788 | 0.820 | |
GM1 | y = 0.031 4x - 0.006 4 | 0.817 | 0.033 | y = 0.703 2x - 0.104 4 | 0.751 | 0.872 | |
SARVI (MSS) | y = 0.012 6x + 0.040 6 | 0.814 | 0.033 | y = 0.278 7x + 0.967 2 | 0.736 | 0.896 | |
TC3 | y = 0.047 3x - 0.027 | 0.806 | 0.034 | y = 1.065 5x - 0.590 2 | 0.751 | 0.877 | |
RVI (900, 680) | y = 0.008 7x + 0.050 5 | 0.807 | 0.034 | y = 0.192 5x + 1.200 4 | 0.719 | 0.923 | |
MSR (800, 670) | y = 0.054 2x + 0.033 4 | 0.814 | 0.034 | y = 1.192 1x + 0.826 5 | 0.724 | 0.923 | |
SDr/SDb | y = 0.011 6x + 0.019 5 | 0.805 | 0.034 | y = 0.259 7x + 0.464 7 | 0.746 | 0.874 | |
PSSRb | y = 0.011 7x + 0.045 8 | 0.806 | 0.034 | y = 0.259 3x + 1.089 | 0.724 | 0.913 | |
(R750-800/R695-740)-1 | y = 0.107 2x + 0.030 6 | 0.793 | 0.035 | y = 2.422 2x + 0.698 1 | 0.744 | 0.884 | |
VOG2 | y = -0.540 6x + 0.049 8 | 0.788 | 0.035 | y = -12.231x + 1.127 9 | 0.741 | 0.885 | |
MSR705 | y = 0.056 8x + 0.014 2 | 0.795 | 0.035 | y = 1.265 6x + 0.364 9 | 0.727 | 0.910 | |
Dr/Db | y = 0.023 6x + 0.012 | 0.774 | 0.036 | y = 0.530 7x + 0.296 6 | 0.717 | 0.913 | |
R870 | y = 0.006 7x - 0.082 | 0.714 | 0.041 | y = 0.145 8x - 1.689 3 | 0.629 | 1.022 |
表2 小麦叶干重和LAI与高光谱参数的定量关系
Table 2 Quantitative relationships of leaf dry weight and leaf area index (LAI) to some hyperspectral parameters in wheat (n=402)
光谱参数 Spectral parameter | 叶干重 Leaf dry weight | 叶面积指数 LAI | |||||
---|---|---|---|---|---|---|---|
回归方程 Equation | R2 | SE | 回归方程 Equation | R2 | SE | ||
RVI (810, 560) | y = 0.024 9x + 0.007 7 | 0.819 | 0.033 | y = 0.561 3x + 0.183 3 | 0.767 | 0.846 | |
FD755 | y = 0.609 2x + 0.054 6 | 0.817 | 0.033 | y = 13.957x + 1.212 | 0.788 | 0.820 | |
GM1 | y = 0.031 4x - 0.006 4 | 0.817 | 0.033 | y = 0.703 2x - 0.104 4 | 0.751 | 0.872 | |
SARVI (MSS) | y = 0.012 6x + 0.040 6 | 0.814 | 0.033 | y = 0.278 7x + 0.967 2 | 0.736 | 0.896 | |
TC3 | y = 0.047 3x - 0.027 | 0.806 | 0.034 | y = 1.065 5x - 0.590 2 | 0.751 | 0.877 | |
RVI (900, 680) | y = 0.008 7x + 0.050 5 | 0.807 | 0.034 | y = 0.192 5x + 1.200 4 | 0.719 | 0.923 | |
MSR (800, 670) | y = 0.054 2x + 0.033 4 | 0.814 | 0.034 | y = 1.192 1x + 0.826 5 | 0.724 | 0.923 | |
SDr/SDb | y = 0.011 6x + 0.019 5 | 0.805 | 0.034 | y = 0.259 7x + 0.464 7 | 0.746 | 0.874 | |
PSSRb | y = 0.011 7x + 0.045 8 | 0.806 | 0.034 | y = 0.259 3x + 1.089 | 0.724 | 0.913 | |
(R750-800/R695-740)-1 | y = 0.107 2x + 0.030 6 | 0.793 | 0.035 | y = 2.422 2x + 0.698 1 | 0.744 | 0.884 | |
VOG2 | y = -0.540 6x + 0.049 8 | 0.788 | 0.035 | y = -12.231x + 1.127 9 | 0.741 | 0.885 | |
MSR705 | y = 0.056 8x + 0.014 2 | 0.795 | 0.035 | y = 1.265 6x + 0.364 9 | 0.727 | 0.910 | |
Dr/Db | y = 0.023 6x + 0.012 | 0.774 | 0.036 | y = 0.530 7x + 0.296 6 | 0.717 | 0.913 | |
R870 | y = 0.006 7x - 0.082 | 0.714 | 0.041 | y = 0.145 8x - 1.689 3 | 0.629 | 1.022 |
[1] |
Blackburn GA (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 19, 657-675.
DOI URL |
[2] |
Chen JM (1996). Evaluation of vegetation indices and modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229-242.
DOI URL |
[3] |
Gitelson AA, Merzlyak MN (1994). Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143, 286-292.
DOI URL |
[4] |
Gitelson AA, Gritz Y, Merzlyak MN (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271-282.
URL PMID |
[5] |
Hansen PM, Schjoerring JK (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542-553.
DOI URL |
[6] |
Hatfield JL, Kanemasu ET, Asrar G, Jackson RD, Pinter Jr PJ, Reginato RJ, Idso SB (1985). Leaf area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 6, 167-175.
DOI URL |
[7] | Kauth RJ, Thomas GS (1976). The tasseled cap — a graphic description of the spectral temporal development of agricultural crops as seen by Landsat. Proceedings of Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN: LARS, 41-51. |
[8] |
Liu WD (刘伟东), Xiang YQ (项月琴), Zheng LF (郑兰芬), Tong QX (童庆禧), Wu CS (吴长山) (2000). Relationships between rice LAI, CH.D and hyperspecrta data. Journal of Remote Sensing (遥感学报), 4, 279-283. (in Chinese with English abstract)
DOI URL |
[9] | Lyon JG, Yuan D, Lunetta RS (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64, 143-150. |
[10] |
Nguyen HT, Lee BW (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy, 24, 349-356.
DOI URL |
[11] |
Patel NK, Patnaik C, Dutta S, Shekh AM, Dave AJ (2001). Study of crop growth parameters using airborne imaging spectrometer. International Journal of Remote Sensing, 22, 2401-2411.
DOI URL |
[12] | Pearson RL, Miller DL (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie. Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 2, 1357-1381. |
[13] |
Peñuelas J, Filella I (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151-156.
DOI URL |
[14] | Richardson AJ, Wiegand CL (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541-1552. |
[15] | Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, TypeIII, Final report, Greenbelt, MD, USA, 1-371. |
[16] |
Shibayama M, Akiyama T (1989). Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 27, 119-127.
DOI URL |
[17] | Sims DA, Gamon JA (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 331-354. |
[18] | Song KS (宋开山), Zhang B (张柏), Li F (李方), Duan HT (段洪涛), Wang ZM (王宗明) (2005). Correlative analyses of hyperspectral reflectance, soybean LAI and aboveground biomass. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 21, 36-40. (in Chinese with English abstract) |
[19] |
Takahashi W, Nguyen CV, Kawaguchi S, Minamiyama M, Ninomiya S (2000). Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies. Plant Production Science, 3, 377-386.
DOI URL |
[20] | Tang YL (唐延林), Wang XZ (王秀珍), Wang FM (王福民), Wang RC (王人潮) (2004). Study on the determination of LAI and biomass of crop by hyperspectral. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 32, 100-104. (in Chinese with English abstract) |
[21] | Tang YL (唐延林), Wang XZ (王秀珍), Wang K (王珂) (2002). Study on the correlation between biophysical parameter and spectral variable. Journal of Guizhou University (Agricultural and Biological Science Edition) (贵州大学学报(农业与生物科学版)), 21, 327-331. (in Chinese with English abstract) |
[22] | Wang XZ (王秀珍), Huang JF (黄敬峰), Li YM (李云梅), Wang RC (王人潮) (2003). Study on hperspectral remote sensing estimation models for the ground fresh biomass of rice. Acta Agronomica Sinica (作物学报), 29, 815-821. (in Chinese with English abstract) |
[23] | Wang XZ (王秀珍), Wang RC (王人潮), Huang JF (黄敬峰) (2002). Derivative spectrum remote sensing and its application in measurement of rice agronomic parameter. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 18, 9-13. (in Chinese with English abstract) |
[24] |
Walburg G, Bauer ME, Daughtry CST, Housley TL (1982). Effects of nitrogen on the growth, yield, and reflectance characteristics of corn canopies. Agronomy Journal, 74, 677-683.
DOI URL |
[25] | Xue LH (薛利红), Cao WX (曹卫星), Luo WH (罗卫红), Wang SH (王绍华) (2004). Relationship between spectral vegetation indices and LAI in rice. Acta Phytoecologica Sinica (植物生态学报), 28, 47-52. (in Chinese with English abstract) |
[26] |
Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491-1507.
DOI URL |
[27] | Zhang XY (张晓阳), Li JF (李劲峰) (1995). The derivation of a reflectance model for the estimation of leaf area index using perpendicular vegetation index. Remote Sensing of Technology and Application (遥感技术与应用), 10(3), 13-18. (in Chinese with English abstract) |
[28] | Zhao CJ, Huang WJ, Wang JH, Yang MH, Xue XZ (2002). The red edge parameters of different wheat varieties under different fertilization and irrigation treatments. Agricultural Sciences in China, 1, 745-751. |
[1] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[2] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[3] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[4] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[5] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[6] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[7] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[8] | 张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525. |
[9] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[10] | 郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692. |
[11] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[12] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[13] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[14] | 周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度[J]. 植物生态学报, 2016, 40(6): 574-584. |
[15] | 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19