植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 755-763.DOI: 10.3773/j.issn.1005-264x.2009.04.014
收稿日期:
2008-12-01
修回日期:
2009-03-29
出版日期:
2009-12-01
发布日期:
2009-07-30
通讯作者:
黄刚
作者简介:
*(fishofbeiming@tom.com)基金资助:
HUANG Gang(), ZHAO Xue-Yong, HUANG Ying-Xin, LI Yu-Lin, SU Yan-Gui
Received:
2008-12-01
Revised:
2009-03-29
Online:
2009-12-01
Published:
2009-07-30
Contact:
HUANG Gang
摘要:
细根寿命对细根周转具有重要影响, 是生态系统C分配格局和养分循环研究的重要内容。该文利用微管法研究了流动沙地和固定沙地生长的差不嘎蒿(Artemisia halodendron)灌丛细根生长的动态过程, 通过Kaplan-Meier方法估计了细根存活率和中位值寿命, 并做存活曲线, 用对数轶检验比较了不同生境、不同土壤层次和不同月出生细根寿命的差异程度, 同时分析了不同样地细根寿命同土壤全氮、有机质、体积含水量和容重的相关关系。结果表明, 流动沙地和固定沙地差不嘎蒿细根具有相似的存活曲线, 但在各观测点, 流动沙地的细根累积存活率均高于固定沙地, 流动沙地细根中位值寿命(47 d)显著高于固定沙地(35 d)。细根寿命同各样地的土壤全氮和土壤容重呈显著的负相关关系, 同土壤水分呈显著的正相关关系, 但多元回归分析表明, 土壤水分是引起细根寿命变异的关键因素。土层深度对流动沙地细根寿命没有显著影响, 但两生境深层30~50 cm的细根寿命均显著高于上层(10~30 cm)。不同出生月的细根寿命显著不同, 流动沙地和固定沙地细根寿命具有相似的季节变化规律, 春季(4、5月)细根的寿命最长(71 d), 秋季(8、9月)次之(61 d), 夏季(6、7月)最短(39 d)。
黄刚, 赵学勇, 黄迎新, 李玉霖, 苏延桂. 两种生境条件下差不嘎蒿细根寿命. 植物生态学报, 2009, 33(4): 755-763. DOI: 10.3773/j.issn.1005-264x.2009.04.014
HUANG Gang, ZHAO Xue-Yong, HUANG Ying-Xin, LI Yu-Lin, SU Yan-Gui. THE ROOT LONGEVITY OF ARTEMISIA HALODENDRON INHABITING TWO SANDY LAND HABITATS. Chinese Journal of Plant Ecology, 2009, 33(4): 755-763. DOI: 10.3773/j.issn.1005-264x.2009.04.014
参数 Parameters | 生境 Habitat | |
---|---|---|
流动沙地 Mobile sandy land | 固定沙地 Fixed sandy land | |
砂粒含量 Sand (%) 0-20a 粘粒含量 Clay (%) 0-20a 容重 Soil bulk density 0-20 (g·cm-3)a 土壤有机质 Soil organic matter 0-20 (g·kg-1)a 土壤全氮 Soil total nitrogen 0-20 (g·kg-1)a 速效氮 Soil available nitrogen (mg·kg-1)b 速效磷 Soil available phosphorus (mg·kg-1)b 冠层面积 Canopy area (m2) 基径直径 Diameter of basal branch (cm) 基径数 Number of basal branch (n) 冠幅高度 Crown height (m) | 98.52±0.11 0.99±0.15 1.61±0.02 0.52±0.04 0.07±0.01 7.23 6.76 7.30 ± 2.03 0.73 ± 0.06 260.33 ± 85.31 0.71± 0.05 | 96.86±0.82ns 2.11±0.49* 1.62±0.03ns 3.06±0.34* 2.43±0.32* 14.36 7.98 1.89 ± 1.09* 1.17 ± 0.12* 16.43 ± 5.72* 0.57± 0.03ns |
表1 流动和固定沙地的土壤特性和差不嘎蒿灌丛生长状况(平均值±标准误差)
Table 1 Aboveground growth conditions of Artemisia halodendron and soil environment factors in the mobile and fixed sandy lands (mean ± SE)
参数 Parameters | 生境 Habitat | |
---|---|---|
流动沙地 Mobile sandy land | 固定沙地 Fixed sandy land | |
砂粒含量 Sand (%) 0-20a 粘粒含量 Clay (%) 0-20a 容重 Soil bulk density 0-20 (g·cm-3)a 土壤有机质 Soil organic matter 0-20 (g·kg-1)a 土壤全氮 Soil total nitrogen 0-20 (g·kg-1)a 速效氮 Soil available nitrogen (mg·kg-1)b 速效磷 Soil available phosphorus (mg·kg-1)b 冠层面积 Canopy area (m2) 基径直径 Diameter of basal branch (cm) 基径数 Number of basal branch (n) 冠幅高度 Crown height (m) | 98.52±0.11 0.99±0.15 1.61±0.02 0.52±0.04 0.07±0.01 7.23 6.76 7.30 ± 2.03 0.73 ± 0.06 260.33 ± 85.31 0.71± 0.05 | 96.86±0.82ns 2.11±0.49* 1.62±0.03ns 3.06±0.34* 2.43±0.32* 14.36 7.98 1.89 ± 1.09* 1.17 ± 0.12* 16.43 ± 5.72* 0.57± 0.03ns |
图1 流动和固定沙地细根直径分布 直径分类代表的细根直径分别为1: 0 to 0.1 mm, 2: 0.1 to 0.2 mm, 3: 0.2 to 0.3 mm, 以此类推 Diameter classes represent ranges of fine root diameters (e.g. 1: 0 to 0.1 mm, 2: 0.1 to 0.2 mm, 3: 0.2 to 0.3 mm, etc.)
Fig. 1 Fine root diameter distributions in mobile and fixed sandy lands throughout two growing season
图2 流动和固定沙地差不嘎蒿细根寿命比较 数据是通过微管观测的12株差不嘎蒿灌丛的所有根系(流动沙地N=1 894, 固定沙地N=1 462) Data are for all roots observed (N=1 894 for mobile sandy land, N=1 462 for fixed sandy land) through minirhizotron windows from a total of 12 plants
Fig. 2 Fine root survival curves of Artemisia halodendron in the mobile sandy land and fixed sandy land
参数 (Y) Parameters | 全氮 Total N | 有机质 SOM | 体积含水量 SVWC | 容重 SBD |
---|---|---|---|---|
细根寿命MRL | -0.83* | -0.58 | 0.96* | -0.89* |
回归方程 Regression model | Y=14.33 + 8.66 SVWC R2=0.92, p=0.002 |
表2 差不嘎蒿细根中位值寿命同土壤全氮、土壤的有机质、土壤体积含水量和土壤容重的简单相关系数和多元线性回归结果(6个样地0~50 cm的所有细根)
Table 2 Pearson correlation coefficients and the results of multiple linear regression of soil volumetric water content (SVWC), soil bulk density (SBD), soil total nitrogen (Total N) and soil organic matter (SOM) on median root longevity (MRL) of Artemisia halodendron at 0-50 cm soil layer of the six subplots
参数 (Y) Parameters | 全氮 Total N | 有机质 SOM | 体积含水量 SVWC | 容重 SBD |
---|---|---|---|---|
细根寿命MRL | -0.83* | -0.58 | 0.96* | -0.89* |
回归方程 Regression model | Y=14.33 + 8.66 SVWC R2=0.92, p=0.002 |
图3 流动和固定沙地不同深度差不嘎蒿细根寿命比较 数据是通过微管观测的12株差不嘎蒿灌丛的所有根系(流动沙地0~10 cm N=795, 10~30 cm N=699, 30~50 cm N=400; 固定沙地0~10 cm N=560, 10~30 cm N=234, 30~50 cm N=668) Data are for all roots observed (mobile sandy land: N=795 for 0-10 cm, N=699 for 10-30 cm, N=400 for 30-50 cm, fixed sandy land: N=560 for 0-10 cm, N=234 for 10-30 cm, N=668 for 30-50 cm) through minirhizotron windows from a total of 12 shrubs
Fig. 3 Fine root survival curves for the roots distributed in different depths
[1] |
Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003). Multiplerisk factors in root survivorship: a four-year study in Concord grape. New Phytologist, 158, 489-501.
DOI URL |
[2] | Bloomfield J, Vogt KA, Wargo PM (1996). Tree root turnover and senescence. In: Waisel AEY, Kafkafi U eds. Plant Roots: the Hidden Half 2nd edn. Marcel Dekker Press, New York, 363-382. |
[3] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan Northern hardwood forests. Oecologia, 125, 389-399.
DOI URL PMID |
[4] | Chao LM (潮洛蒙), Piao SJ (朴顺姬), Zhi RN (智瑞年), Song MH (宋明华) (1996). The distribution patterns of Artemisia Halodendron in different sandy land types. Journal of Desert Research (中国沙漠), 19(Suppl. 1), 45-48. (in Chinese with English abstract) |
[5] | Cheng YH (程云环), Han YZ (韩有志), Wang QC (王庆成), Wang ZQ (王政权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelinii plantation. Acta Phytoecologica Sinica (植物生态学报), 29, 403-410.( in Chinese with English abstract) |
[6] |
Coleman MD, Dickson RE, Isebrands JG (2000). Contrasting fine root production, survival and soil CO2 efflux in pine and poplar plantations. Plant and Soil, 225, 129-139.
DOI URL |
[7] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[8] |
Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
DOI URL |
[9] |
Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. Journal of Ecology, 96, 737-745.
DOI URL PMID |
[10] |
Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73, 1094-1104.
DOI URL |
[11] |
Hendrick RL, Pregitzer KS (1993). Patterns of fine root mortality in two sugar maple forests. Nature, 361, 59-61.
DOI URL |
[12] |
Hǒgberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hǒgberg MN, Nyberg G, Ottosson-Lǒfvenius M, Read DJ (2001). Large- scale forest girdling shows that current photosynjournal drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[13] |
Huang B, Nobel PS (1992). Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission. Journal of Experimental Botany, 43, 1441-1449.
DOI URL |
[14] |
Huang G, Zhao XY, Su YG, Zhao HL, Zhang TH (2008). Vertical distribution, biomass, production and turnover of fine roots along a topographical gradient in a sandy shrubland. Plant and Soil, 308, 201-212.
DOI URL |
[15] |
Jackson B, Mooney HA, Schulze ED (1997). A global budget for fine-root biomass, surface area, and nutrient contents. The National Academy of Sciences of the United States of America, 94, 7362-7366.
DOI URL |
[16] |
Johnson MG, Phillips DL, Tingey DT, Storm MJ (2000). Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots. Canadian Journal of Forest Research, 30, 220-228.
DOI URL |
[17] | Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 4, 263-289. |
[18] | Lawson GJ (1995). Roots in tropical agroforestry system (Appendix 1). In: Cannell MGR, Crout NMJ, Dewar RC eds. Annual Report June 1993- June 1994 of Agroforestry Modelling and Research Coordination. ODA Forestry Research Programme RS651, 1-25. |
[19] |
Li FR, Zhang AS, Duan SS, Kang LF (2005). Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologica, 28, 57-64.
DOI URL |
[20] | Liu SG (刘士刚), Piao SJ (朴顺姬), An MZ (安卯柱), Liu F (刘芳) (2003). Distribution dynamics of Artemisia halodendron absorbent roots in different kinds of sandy land. Acta Phytoecologica Sinica (植物生态学报), 27, 684-689. (in Chinese with English abstract) |
[21] | Liu XM (刘新民), Zhao HL (赵哈林), Zhao AF (赵爱芬) (1996). Wind-Sandy Environment and Vegetation in the Horqin Sandy Land, China (科尔沁沙地风沙植被与环境). Science Press, Beijing, 57-70. (in Chinese) |
[22] |
Majdi H (2001). Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in Northern Sweden. Tree Physiology, 21, 1057-1061.
DOI URL PMID |
[23] |
Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 147, 131-139.
DOI URL |
[24] |
North GB, Huang B, Nobel PS (1993). Changes in the structure and hydraulic conductivity for root junctions of desert succulents as soil water status varies. Botanica Acta, 106, 126-135.
DOI URL |
[25] | Peek MS (2007). Explaining variation in fine root life span. Progress in Botany, 68, 382-398. |
[26] |
Pregitzer KS, Hendrick RL, Fogel R (1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575-580.
DOI URL |
[27] |
Pregitzer KS, King JS, Burton AJ, Brown SE (2000). Responses of tree fine roots to temperature. New Phytologist, 147, 105-115.
DOI URL |
[28] | Schoettle A, Fahey TJ (1994). Foliage and fine root longevity in pines. Ecological Bulletins, 43, 136-153. |
[29] | Tierney GL, Fahey TJ (2001). Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant and Soil, 229, 167-176. |
[30] | Tingey DT, Phillips DL, Johnson MG (2000). Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytologist, 147, 87-103. |
[31] | Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508. |
[32] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above and belowground detritus of world forests. Advances in Ecological Research, 15, 303-307. |
[33] | Vogt KA, Vogt D, Palkiotto PA, Boon P, O'Hara1 J, Asbjornsen H (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-199. |
[34] | Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameters. Ecology, 82, 882-892. |
[35] | Wells CE, Eissenstat DM (2003). Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21, 324-334. |
[36] | Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica(Rosaceae). Botanical Society of America, 89, 79-87. |
[37] | West JB, Espeleta JF, Donovan LA (2003). Root longevity and phenology differences between two co-occurring savanna bunchgrasses with different leaf habits. Functional Ecology, 17, 20-28. |
[38] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-398. |
[39] | Yu SQ (于水强), Wang ZQ (王政权), Shi JW (史建伟), Quan XK (全先奎), Mei L (梅莉), Sun Y (孙玥), Jia SX (贾淑霞), Yu LZ (于立忠) (2007). Estimating fine root longevity of Fraxinus mandshurica and Larix gmelinii using mini-rhizotrons. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 102-109. (in Chinese with English abstract) |
[40] | Zhang XQ (张小全) (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14, 566-573. (in Chinese with English abstract) |
[41] | Zhao HL, Zhou RL, Su YZ, Zhang H, Zhao LY, Drake S (2007). Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 31, 1-8. |
[42] | Zhou RL (周瑞莲), Wang HO (王海欧), Zhao HL (赵哈林) (1999). Responses of protective enzymatic systems to atmosphere dehydration and high temperature in several plant species in sandy land environments. Journal of Desert Research (中国沙漠), 19(Suppl.1), 49-54. (in Chinese with English abstract) |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[5] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[6] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[7] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[8] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[9] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[10] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[11] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[12] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[13] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[14] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[15] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19