植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 488-497.DOI: 10.3773/j.issn.1005-264x.2010.05.002
所属专题: 青藏高原植物生态学:种群生态学
收稿日期:
2009-09-14
接受日期:
2009-12-08
出版日期:
2010-09-14
发布日期:
2010-05-01
通讯作者:
吴宁
作者简介:
* E-mail: wuning@cib.ac.cn
SHI Fu-Sun, WU Ning*(), WU Yan
Received:
2009-09-14
Accepted:
2009-12-08
Online:
2010-09-14
Published:
2010-05-01
Contact:
WU Ning
摘要:
在野外自然条件下采用开顶式生长室模拟增温的方法, 研究了增温对川西北高寒草地3种主要植物(单子叶草本植物垂穗披碱草(Elymus nutans)和双子叶草本植物尼泊尔酸模(Rumex acetosa)和鹅绒委陵菜(Potentilla anserina))的生长及物质分配的影响。研究结果表明, 增温对3种植物的生长产生了显著影响, 垂穗披碱草和尼泊尔酸模的比叶面积和生物量积累在增温后显著增加, 而鹅绒委陵菜在增温后显著减少。在各组分中, 增温处理使尼泊尔酸模的叶生物量显著增加, 根生物量却显著下降, 而鹅绒委陵菜叶和茎的生物量在增温后显著减少, 根生物量却显著增加。增温对尼泊尔酸模各组分的养分含量产生了显著影响, 其中, 根部碳含量在增温后显著增加, 而氮含量在增温后显著减少。增温对尼泊尔酸模和鹅绒委陵菜的生物量在各组分中的分配产生了显著影响, 增温显著增加了尼泊尔酸模的叶重比(LMR)、根重比(RMR)和地下生物量/地上生物量(R/S), 而茎重比(SMR)在增温后却显著降低; 增温显著增加了鹅绒委陵菜的RMR和R/S, 而SMR和LMR在增温后却显著降低。增温对尼泊尔酸模和鹅绒委陵菜各组分中的碳、氮分配产生了显著影响, 增温显著增加了碳、氮在尼泊尔酸模叶片的分配比例, 并且使尼泊尔酸模根部的碳分配比例也显著增加, 而茎部的碳、氮分配比例却显著减少; 增温显著减少了碳在鹅绒委陵菜叶片的分配比例, 而根部的碳、氮分配比例却显著增加。
石福孙, 吴宁, 吴彦. 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应. 植物生态学报, 2010, 34(5): 488-497. DOI: 10.3773/j.issn.1005-264x.2010.05.002
SHI Fu-Sun, WU Ning, WU Yan. Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34(5): 488-497. DOI: 10.3773/j.issn.1005-264x.2010.05.002
月/年 Month/Year | 温度 Temperature (℃) | 土壤相对含水量 Soil relative water content (%) | |||
---|---|---|---|---|---|
土壤 Soil | 空气 Air | 0-5 cm | 10-15 cm | ||
6/2006-9/2006 | OTC | 12.01 | 8.87 | 36.17 | 45.76 |
对照 Control | 11.48 | 7.26 | 50.34 | 48.29 | |
差值 Difference | 0.53 | 1.61 | -14.17 | -2.53 | |
6/2007-9/2007 | OTC | 12.03 | 8.73 | 42.03 | 53.58 |
对照 Control | 11.56 | 7.33 | 55.52 | 54.18 | |
差值 Difference | 0.46 | 1.40 | -13.49 | -0.60 | |
6/2008-9/2008 | OTC | 12.27 | 9.07 | 38.58 | 46.22 |
对照 Control | 11.75 | 7.48 | 51.46 | 50.34 | |
差值 Difference | 0.52 | 1.59 | -12.88 | -4.12 |
表1 开顶式生长室(OTC)与对照样地内温度与土壤相对含水量的变化(2006-2008年)
Table 1 Variation of temperature and mean soil relative water content in the open-top chamber (OTC) and in the control plot in the growing season (2006-2008)
月/年 Month/Year | 温度 Temperature (℃) | 土壤相对含水量 Soil relative water content (%) | |||
---|---|---|---|---|---|
土壤 Soil | 空气 Air | 0-5 cm | 10-15 cm | ||
6/2006-9/2006 | OTC | 12.01 | 8.87 | 36.17 | 45.76 |
对照 Control | 11.48 | 7.26 | 50.34 | 48.29 | |
差值 Difference | 0.53 | 1.61 | -14.17 | -2.53 | |
6/2007-9/2007 | OTC | 12.03 | 8.73 | 42.03 | 53.58 |
对照 Control | 11.56 | 7.33 | 55.52 | 54.18 | |
差值 Difference | 0.46 | 1.40 | -13.49 | -0.60 | |
6/2008-9/2008 | OTC | 12.27 | 9.07 | 38.58 | 46.22 |
对照 Control | 11.75 | 7.48 | 51.46 | 50.34 | |
差值 Difference | 0.52 | 1.59 | -12.88 | -4.12 |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 31.18 ± 3.17a | 26.67 ± 2.36b |
比叶面积 Specific leaf area (cm2·g-1) | 82.89 ± 5.86a | 75.83 ± 3.61b |
地上生物量 Aboveground biomass (g·m-2) | 22.55 ± 4.19a | 7.49 ± 2.35b |
表2 增温对垂穗披碱草生长和生物量积累的影响(平均值±标准偏差, n = 5)
Table 2 Effects of temperature enhancement on plant growth and biomass accumulation of Elymus nutans (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 31.18 ± 3.17a | 26.67 ± 2.36b |
比叶面积 Specific leaf area (cm2·g-1) | 82.89 ± 5.86a | 75.83 ± 3.61b |
地上生物量 Aboveground biomass (g·m-2) | 22.55 ± 4.19a | 7.49 ± 2.35b |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 49.67 ± 5.76a | 49.09 ± 7.41a |
比叶面积 Specific leaf area (cm2·g-1) | 35.70 ± 3.01a | 33.76 ± 2.17a |
总生物量 Total biomass (g per unit) | 3.93 ± 0.34a | 3.08 ± 0.22b |
叶生物量 Leaf mass (g) | 0.63 ± 0.15a | 0.34 ± 0.11b |
茎生物量 Stem mass (g) | 1.37 ± 0.31a | 1.43 ± 0.06a |
根生物量 Root mass (g) | 1.93 ± 0.79a | 1.31 ± 0.13b |
表3 增温对尼泊尔酸模生长和生物量积累的影响(平均值± 标准偏差, n = 5)
Table 3 Effects of temperature enhancement on plant growth and biomass accumulation of Rumex acetosa (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 49.67 ± 5.76a | 49.09 ± 7.41a |
比叶面积 Specific leaf area (cm2·g-1) | 35.70 ± 3.01a | 33.76 ± 2.17a |
总生物量 Total biomass (g per unit) | 3.93 ± 0.34a | 3.08 ± 0.22b |
叶生物量 Leaf mass (g) | 0.63 ± 0.15a | 0.34 ± 0.11b |
茎生物量 Stem mass (g) | 1.37 ± 0.31a | 1.43 ± 0.06a |
根生物量 Root mass (g) | 1.93 ± 0.79a | 1.31 ± 0.13b |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 9.67±3.64a | 10.38±2.85a |
比叶面积 Specific leaf area (cm2·g-1) | 83.65±5.36a | 95.11±6.13b |
总生物量 Total biomass (g per unit) | 0.70±0.04a | 0.86±0.13b |
叶生物量 Leaf mass (g) | 0.30±0.04a | 0.42±0.07b |
茎生物量 Stem mass (g) | 0.17±0.06a | 0.26±0.04b |
根生物量 Root mass (g) | 0.23±0.04a | 0.18±0.02b |
表4 增温对鹅绒委陵菜生长和生物量积累的影响(平均值± 标准偏差, n = 5)
Table 4 Effects of temperature enhancement on plant growth and biomass accumulation of Potentilla anserina (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 9.67±3.64a | 10.38±2.85a |
比叶面积 Specific leaf area (cm2·g-1) | 83.65±5.36a | 95.11±6.13b |
总生物量 Total biomass (g per unit) | 0.70±0.04a | 0.86±0.13b |
叶生物量 Leaf mass (g) | 0.30±0.04a | 0.42±0.07b |
茎生物量 Stem mass (g) | 0.17±0.06a | 0.26±0.04b |
根生物量 Root mass (g) | 0.23±0.04a | 0.18±0.02b |
图1 增温对尼泊尔酸模生物量分配的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。LMR, 叶/总生物量; RMR, 根/总生物量; R/S, 地下生物量/地上生物量; SMR, 茎/总生物量。
Fig. 1 Effects of temperature enhancement on biomass allocation of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between open-top chambers (OTC) plot and the control plot at p < 0.05. LMR, leaf mass ratio; RMR, root mass ratio; R/S, root/shoot mass ratio; SMR, stem mass ratio.
图2 增温对鹅绒委陵菜生物量分配的影响(平均值±标准偏差, n = 5)。 图注同图1。
Fig. 2 Effects of temperature enhancement on biomass allocation of Potentilla anserina (mean ± SD, n = 5). The notes are the same as in Fig. 1.
图3 增温对垂穗披碱草叶片中C、N含量的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。
Fig. 3 Effects of temperature enhancement on C and N content in Elymus nutans leaf (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
图4 增温对尼泊尔酸模不同组分中C、N含量的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。
Fig. 4 Effects of temperature enhancement on C and N content in different parts of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
图5 增温对鹅绒委陵菜不同组分中C、N含量的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。
Fig. 5 Effects of temperature enhancement on C and N content in different parts of Potentilla anserina (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
图6 增温对尼泊尔酸模不同组分中C、N分配的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。
Fig. 6 Effects of temperature enhancement on C and N allocation in different parts of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
图7 增温对鹅绒委陵菜不同组分中C、N分配的影响(平均值±标准偏差, n = 5)。 不同处理间的不同字母表示差异显著(p < 0.05)。
Fig. 7 Effects of temperature enhancement on C and N allocation in different parts of Potentilla anserina (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
[1] |
Anten NPR, Schieving F, Werger MJA (1995). Patterns of light and nitrogen distribution in relation to whole canopy gain in C3 and C4 mono- and dicotyledonous species. Oecologia, 101, 504-513.
URL PMID |
[2] | Asseng S, Ritchie JT, Smucker AJ, Robertson MJ (1998). Root growth and water uptake during water deficit and recovering in wheat. Plant Soil, 201, 265-273. |
[3] | Boeck HJ, Lemmens CH, Gielen H, Malchair S, Carnol M, Merckx R, Ceulemans R, Nijs I (2006). Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany, 60, 95-104. |
[4] | Chapin III FS (1991). Integrated response of plants to stress. BioScience, 41, 29-36. |
[5] | Chapin ES, Shaver GR (1985). Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology, 66, 564-576. |
[6] | Chapin FS, Shaver GR, Giblin AE, Nadelhofer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[7] |
Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002). How plants cope with water stress in the field? Photosynthesis and Growth. Annals of Botany, 89, 907-916.
DOI URL PMID |
[8] | Chen ZZ (陈佐忠), Wang SP (汪诗平) (2000). Typical Grassland Ecosystem in China (中国典型草原生态系统). Science Press, Beijing. (in Chinese) |
[9] | Delucia EH, Heckathorn SA, Day TA (1992). Effects of soil temperature on growth, biomass allocation and resource acquisition of Andropogon gerardii Vitman. New Phytologist, 120, 543-549. |
[10] | Domisch T, Finer L, Lehto T (2002). Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant and Soil, 239, 173-185. |
[11] | Dubrovsky JG, North GB, Nobel PS (1998). Root growth, developmental changes in the apex, and hydraulic conductivity for Opuntia ficus-indica during drought. New Phytologist, 138, 75-82. |
[12] | Eatherall A (1997). Modelling climate change impacts on ecosystems using linked models and a GIS. Climatic Change, 35, 17-34. |
[13] | Edwards EJ, Benham DG, Marland LA, Fitter AH (2004). Root production is determined by radiation flux in a temperate grassland community. Global Change Biology, 10, 209-227. |
[14] | Ericsson T (1995). Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant and Soil, 169, 205-214. |
[15] |
Gregory PJ (1986). Response to temperature in a stand of pearl millet ( Pennisetum typhoides S. & H.). VIII. Root growth. Journal of Experimental Botany, 37, 379-388.
DOI URL |
[16] | Gugerli F, Bauert MR (2001). Growth and reproduction of Polygonum viviparum show weak responses to experimentally increased temperature at a Swiss alpine site. Botanica Helvetica, 111, 169-180. |
[17] | Gunn S, Farrar JF (1999). Effects of a 4 °C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbondydrates. Functional Ecology, 13(Suppl. 1), 12-20. |
[18] | Hatch DJ, Macduff JH (1991). Concurrent rates of N2 fixation, nitrate and ammonium uptake by white clover in response to growth at different root temperature. Annals of Botany, 67, 265-274. |
[19] |
Haupt-Herting S, Fock HP (2002). Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Annals of Botany, 89, 851-859.
DOI URL PMID |
[20] | Kimball BA (2005). Theory and performance of an infrared heater for warming ecosystem. Global Change Biology, 11, 2041-2056. |
[21] | Lambers H, der Werf A, Konings H (1991). Respiratory patterns in roots in relation to their functioning. Plant Roots. In: Waisel Y, Eshel A, Kafkafi U eds. The Hidden Half. Marcel Dekker Inc., New York. 229-263. |
[22] | Li YN (李英年) (2000). Simulation of forage yield and stocking rate on alpine grassland in response to warming trend of climate. Acta Phytoecologica Sinica (草业学报), 6, 77-82. (in Chinese with English abstract) |
[23] |
Luomala EM, Laitinen K, Sutinen S (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell and Environment, 28, 733-749.
DOI URL |
[24] | Mitchell RAC, Mitchel VJ, Driscoll SP, Franklin J, Lawlor DW (1993). Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell and Environment, 16, 521-529. |
[25] | Rawson HM (1992). Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany, 40, 473-490. |
[26] | Romero JM, Maranon T (1996). Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): effects of NaCl salinity and plant age. New Phytologist, 132, 565-573. |
[27] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
URL PMID |
[28] | Saleska SR, Harte J, Torn MS (1999). The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology, 5, 125-141. |
[29] | Shah NH, Paulsen GM (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 257, 219-226. |
[30] | Shi FS (石福孙), Wu N (吴宁), Luo P (罗鹏) (2008). Effect of temperature enhancement on community structure and biomass of subalpine meadow in northwestern Sichuan. Acta Ecological Sinica (生态学报), 28, 5286-5293. (in Chinese with English abstract) |
[31] | Squire GR, Marshall B, Terry AC, Monteith JL (1984). Response to temperature in a stand of pearl millet. VI. Light interception and dry matter production. Journal of Experimental Botany, 35, 599-610. |
[32] | Szaniawski RK (1983). Adaption and functional balance between shoot and root activity of sunflower grown at different root temperature. Annals of Botany, 51, 453-459. |
[33] | Tingey DT, McVeety BD, Waschmann R, Johnson MG, Phillips DL, Rygiewicz PT, Olszyk DM (1996). A versatile sun-lit controlled-environment facility for studying plant and soil processes. Journal of Environmental Quality, 25, 615-625. |
[34] | Valpine P, Harte J (2001). Plant response to experimental warming in a montane meadow. Ecology, 82, 637-648. |
[35] | Wang M (王谋), Li Y (李勇), Bai XZ (白宪洲), Huang RQ (黄润秋) (2004). The effect of global warming on the grassland resources of inner Tibet Plateau. Journal of Natural Resources (自然资源学报), 19, 331-335. (in Chinese with English abstract) |
[36] | Wang Q, Tenhunen J, Falge E, Bemhofer CH, Granier A (2003). Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 10, 37-51. |
[37] | Welker JM, Briske DD (1992). Clonal biology of the temperate caespitose graminoid Schizachyrium scoparium: a synthesis with reference to climate change. Oikos, 56, 357-365. |
[38] | Zhang XS (张新时) (1993). The classified system of vegetation-climate on global change. Quaternary Research (第四纪研究), 2, 157-169. (in Chinese with English abstract) |
[39] | Zhang YQ, Welker JM (1996). Tibetan alpine tundra response to simulated changes in climate: aboveground biomass and community responses. Arctic and Alpine Research, 28, 203-209. |
[40] | Zhou HQ (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia hunilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24, 547-553. (in Chinese with English abstract) |
[41] | Zobel M, Zobel K (2002). Studying plant competition: from root biomass to general aims. Journal of Ecology, 90, 578-580. |
[1] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[6] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[11] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[14] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[15] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19