植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 517-525.DOI: 10.3773/j.issn.1005-264x.2010.05.005
彭剑峰1, 勾晓华2,*(), 陈发虎2, 方克艳2, 张芬2
收稿日期:
2009-09-08
接受日期:
2009-12-03
出版日期:
2010-09-08
发布日期:
2010-05-01
通讯作者:
勾晓华
作者简介:
* E-mail: xhgou@lzu.edu.cn
PENG Jian-Feng1, GOU Xiao-Hua2,*(), CHEN Fa-Hu2, FANG Ke-Yan2, ZHANG Fen2
Received:
2009-09-08
Accepted:
2009-12-03
Online:
2010-09-08
Published:
2010-05-01
Contact:
GOU Xiao-Hua
摘要:
选择青海省同德县南部河北林场的一个连续坡面, 根据不同海拔和坡向设置4个采样点, 采集祁连圆柏(Sabina przewalskii)树轮数据, 分析不同海拔和坡向对树木生长的影响。结果表明: 坡面上部3个采样点的树轮年表特征值均呈一定的变化规律——平均敏感值(MS)和标准差(SD)随海拔升高而增大, 一阶自相关(AC)随海拔升高而递减, 下限年表特征值均表现出与其他3点的不同, 都是最值(MS和SD均最大, AC最小); 年表间相关和主成分分析结果都显示出海拔梯度上的变化规律, 但下限差异显著; 树轮指数与当年6-8月平均气温的相关系数呈增强趋势, 森林上限受当年7、8月平均气温影响较大, 下限树轮指数不仅与当年6月和前一年11月的气温显著负相关, 而且受前一年8月和当年5月的月降水量影响显著。与通常情况“下限树木生长受降水制约”比较, 这里的温度作用增强而降水限制减弱。显然, 坡向扭转是海拔梯度上影响祁连圆柏生长变化的重要因子。
彭剑峰, 勾晓华, 陈发虎, 方克艳, 张芬. 坡向对海拔梯度上祁连圆柏树木生长的影响. 植物生态学报, 2010, 34(5): 517-525. DOI: 10.3773/j.issn.1005-264x.2010.05.005
PENG Jian-Feng, GOU Xiao-Hua, CHEN Fa-Hu, FANG Ke-Yan, ZHANG Fen. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chinese Journal of Plant Ecology, 2010, 34(5): 517-525. DOI: 10.3773/j.issn.1005-264x.2010.05.005
采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | 坡向 Slope aspect | 海拔高度 Altitude (m) | 样芯/株数 Samples/trees |
---|---|---|---|---|---|
HB1 | 100°43′33″ | 34°43′32″ | 南坡 South slope | 3 730 | 43/31 |
HB2 | 3 650 | 36/25 | |||
HB3 | 3 580 | 38/30 | |||
HB4 | 东南坡 Southeast slope | 3 520 | 37/25 |
表1 采样点的基本概况
Table 1 Basic information of sampling sites
采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | 坡向 Slope aspect | 海拔高度 Altitude (m) | 样芯/株数 Samples/trees |
---|---|---|---|---|---|
HB1 | 100°43′33″ | 34°43′32″ | 南坡 South slope | 3 730 | 43/31 |
HB2 | 3 650 | 36/25 | |||
HB3 | 3 580 | 38/30 | |||
HB4 | 东南坡 Southeast slope | 3 520 | 37/25 |
图2 不同海拔树轮宽度标准年表和样本数量。 曲线代表树轮宽度指数; 折线代表样本量; 竖直虚线代表子样本信号强度(SSS) > 0.8的起始年代。HB1-HB4同表1。
Fig. 2 Standard ring-width chronologies and sampling numbers along elevation gradient. Curves stand for tree ring-width indices; Bleaks stand for sampling numbers; Vertical dotted lines stand for the begin year of subsample signal strength (SSS) > 0.8. HB1-HB4 see Table 1.
站名 Station name | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年平均降水量 Mean annual precipitation (mm) |
---|---|---|---|---|---|
玛沁 Maqên | 100°15′ | 34°28′ | 3 720.0 | -0.37 | 508.1 |
河南 Henan | 101°15′ | 34°44′ | 3 500.0 | 0.26 | 583.4 |
同德 Tongde | 100°39′ | 35°16′ | 3 290.4 | 0.49 | 425.5 |
表2 采样点附近3个气象站点的基本资料(1959-2001年)
Table 2 Basic data from three meteorological stations near sampling sites (1959-2001)
站名 Station name | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年平均降水量 Mean annual precipitation (mm) |
---|---|---|---|---|---|
玛沁 Maqên | 100°15′ | 34°28′ | 3 720.0 | -0.37 | 508.1 |
河南 Henan | 101°15′ | 34°44′ | 3 500.0 | 0.26 | 583.4 |
同德 Tongde | 100°39′ | 35°16′ | 3 290.4 | 0.49 | 425.5 |
图3 3个气象站点的月平均气温和降水量。 HN, 河南; MQ, 玛沁; TD, 同德。
Fig. 3 Mean month temperature and mean month precipitation of three meteorological stations near sampling sites. HN, Henan; MQ, Maqên; TD, Tongde.
采样点 Sampling sites | 年份 Year | 样芯数量 Number of rings | SSS > 0.8 起始年 (样芯数) SSS > 0.8 start year (cores) | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计值(1900-2000年) Common interval analysis (1900-2000) | |||
---|---|---|---|---|---|---|---|---|
MS | SD | AC | SNR | EPS | ||||
HB1 | 1807-2004 | 29 | 1 849 (8) | 0.136 | 0.182 | 0.567 | 5.542 | 0.847 |
HB2 | 1778-2004 | 32 | 1 802 (9) | 0.108 | 0.162 | 0.598 | 7.912 | 0.888 |
HB3 | 1733-2004 | 27 | 1 811 (9) | 0.108 | 0.162 | 0.662 | 7.043 | 0.876 |
HB4 | 1498-2004 | 35 | 1 740 (10) | 0.173 | 0.190 | 0.331 | 9.242 | 0.902 |
表3 标准树轮宽度年表的特征值和公共区间
Table 3 Statistics and results of common interval analysis from four standard chronologies
采样点 Sampling sites | 年份 Year | 样芯数量 Number of rings | SSS > 0.8 起始年 (样芯数) SSS > 0.8 start year (cores) | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计值(1900-2000年) Common interval analysis (1900-2000) | |||
---|---|---|---|---|---|---|---|---|
MS | SD | AC | SNR | EPS | ||||
HB1 | 1807-2004 | 29 | 1 849 (8) | 0.136 | 0.182 | 0.567 | 5.542 | 0.847 |
HB2 | 1778-2004 | 32 | 1 802 (9) | 0.108 | 0.162 | 0.598 | 7.912 | 0.888 |
HB3 | 1733-2004 | 27 | 1 811 (9) | 0.108 | 0.162 | 0.662 | 7.043 | 0.876 |
HB4 | 1498-2004 | 35 | 1 740 (10) | 0.173 | 0.190 | 0.331 | 9.242 | 0.902 |
HB1 | HB2 | HB3 | HB4 | |
---|---|---|---|---|
HB1 | 1 | |||
HB2 | 0.518** | 1 | ||
HB3 | 0.438** | 0.575** | 1 | |
HB4 | 0.229** | 0.320** | 0.485** | 1 |
表4 4个标准年表之间的相关性
Table 4 Correlation between four standard chronologies
HB1 | HB2 | HB3 | HB4 | |
---|---|---|---|---|
HB1 | 1 | |||
HB2 | 0.518** | 1 | ||
HB3 | 0.438** | 0.575** | 1 | |
HB4 | 0.229** | 0.320** | 0.485** | 1 |
图4 不同海拔树轮年表的第一主成分和第二主成分载荷值分布。 HB1-HB4同表1。
Fig. 4 Distribution diagram of first principal component (PC1) and second principal component (PC2) loads from four standard chronologies along elevation gradient. HB1-HB4 see Table 1.
图5 树轮序列的第一主成分与月平均气温和月降水量之间的相关系数。 横坐标字母代表月份的英文缩写。椭圆代表p < 0.05。
Fig. 5 Correlation coefficients between first principal component (PC1) of four ring-width chronologies and mean month temperature and month precipitation. Abbreviation of the month is represented on the abscissa. Ellipse indicate p<0.05.
图6 不同海拔树轮年表与月平均气温和降水量的相关关系。 横坐标字母代表月份的英文缩写。椭圆代表p < 0.05。
Fig. 6 Correlation between four ring-width chronologies along differential elevation and mean month temperature and total month precipitation. Abbreviation of the month is represented on the abscissa. Ellipse indicate p < 0.05.
[1] |
Biondi F (2000). Are climate-tree growth relationships changing in north-central Idaho? Arctic, Antarctic, and Alpine Research, 32, 111-116.
DOI URL |
[2] |
Buckley BM, Cook ER, Peterson MJ, Barbetti M (1997). A changing temperature response with elevation for Lagarostrobos franklinii in Tasmania, Australia. Climatic Change, 36, 477-498.
DOI URL |
[3] | Cook ER, Holmes RL (1986). Users manual for ARSTAN. Laboratory of Tree-ring Research, University of Arizona, Tucson, USA. |
[4] | Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology: Application in the Environmental Sciences. Kluwer Academic Publisher, Dordrecht, The Netherlands. |
[5] |
Daubenmire RF (1946). Radial growth of trees at different altitudes. Botanical Gazette, 107, 462-467.
DOI URL |
[6] | Fowells HA (1941). The period of seasonal growth of ponderosa pine and associated species. Journal of Forestry, 39, 601-608. |
[7] |
Gou XH, Chen FH, Gordon J, Cook E, Yang MX, Peng JF, Zhang Y (2007). Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. International Journal of Climatology, 27, 1497-1503.
DOI URL |
[8] | Gou XH (勾晓华), Chen FH (陈发虎), Yang MX (杨梅学), Peng JF (彭剑峰), Qiang WY (强维亚), Chen T (陈拓) (2004). Analysis of the tree-ring width chronology of Qi- lian Mountains at different elevation. Acta Ecologica Sinica (生态学报), 24, 172-176. (in Chinese with English abstract ) |
[9] |
Gou XH, Peng JF, Chen FH, Yang MX, Levia DF, Li JB (2008). A dendrochronological analysis of maximum summer-half-year temperature variations on the Northeastern Tibetan Plateau over past 700 years from tree-rings. Theoretical and Applied Climatology, 93, 195-206.
DOI URL |
[10] | Gou XH (勾晓华), Yang MX (杨梅学), Peng JF (彭剑峰), Zhang Y (张永), Chen T (陈拓), Hou ZD (侯宗东) (2006). Maximum temperature reconstruction for Animaqin Mountains over past 830 a based on tree-ring records. Quaternary Sciences (第四纪研究), 26, 991-998. (in Chinese with English abstract ) |
[11] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75. |
[12] |
Liang EY, Shao XM, Eckstein D, Huang L, Liu XH (2006). Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236, 268-277.
DOI URL |
[13] |
Liu LS, Shao XM, Liang EY (2006). Climate signals from tree ring chronologies of the upper and lower tree lines in the Dulan region of the northeastern Qinghai-Tibetan Plateau. Journal of Integrative Plant Biology, 48, 278-285.
DOI URL |
[14] | Lu WD (卢纹岱), Zhu YL (朱一力), Sha J (沙捷), Zhu HB (朱红兵) (2008). SPSS for Windows (SPSS统计分析). Electronics Industry Press, Beijing. (in Chinese) |
[15] |
Mann HB (1945). Non-parametric tests against trend. Econometrica, 13, 245-259.
DOI URL |
[16] | Peng JF (彭剑峰), Gou XH (勾晓华), Chen FH (陈发虎), Liu PX (刘普幸), Zhang YX (张永香), Zhang Y (张永), Tian QH (田沁花) (2006). The characteristics of tree-ring width of Sabina przewalskii Kom for different elevations in the Anyemaqen Mountains. Journal of Glaciology and Geocryology (冰川冻土), 28, 713-721. (in Chinese with English abstract) |
[17] | Peng JF (彭剑峰), Gou XH (勾晓华), Chen FH (陈发虎), Liu PX (刘普幸), Zhang Y (张永), Fang KY (方克艳) (2007a). Characteristics of ring-width chronologies of Picea crassifolia and their responses to climate at different elevations in the Anyemaqen Mountains. Acta Ecologica Sinica (生态学报), 27, 3268-3276. (in Chinese with English abstract) |
[18] |
Peng JF, Gou XH, Chen FH, Li JB, Liu PX, Zhang Y (2008a). Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia, 26, 87-96.
DOI URL |
[19] | Peng JF (彭剑峰), Gou XH (勾晓华), Chen FH (陈发虎), Zhang YX (张永香), Liu PX (刘普幸), Zhang Y (张永), Fang KY (方克艳) (2007b). Horizontal variations of climatic response of Qilian juniper (Juniperus przewalskii Kom.) in the Anyemaqen Mountains. Acta Geographica Sinica (地理学报), 62, 742-752. (in Chinese with English abstract) |
[20] |
Peng JF, Gou XH, Chen FH, Li JB, Liu PX, Zhang Y, Fang KY (2008b). Difference in tree growth responses to climate at the upper treeline: Qilian Juniper in the Anyemaqen Mountains. Journal of Integrative Plant Biology, 50, 982-990.
URL PMID |
[21] | Qinghai Forest Editorial Committee (《青海森林》编辑委员会) (1993). Forest in Qinghai Province (青海森林). China Forestry Publishing House, Beijing. 230-442. (in Chinese) |
[22] |
Splechtna BE, Dobry J, Klinka K (2000). Tree-ring characteristics of subalpine fir ( Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annals of Forest Science, 57, 89-100.
DOI URL |
[23] | Stokes MA, Smiley TL (1968). An Introduction to Tree Ring Dating. The University of Chicago Press, Chicago. |
[24] | Wang QC (汪青春), Zhou LS (周陆生), Qin NS (秦宁生), Li L (李林), Zhu XD (朱西德), Wang ZY (王振宇) (2003). Winter temperature of Tuotuo river reconstructed using tree-ring chronology of Wulan. Plateau Meteorology (高原气象), 22, 518-523. (in Chinese with English abstract) |
[25] | Wang YJ (王亚军), Chen FH (陈发虎), Gou XH (勾晓华), Du XY (杜淑英) (2001). Study on the response relationship between tree ring and climate factors and climate reconstruction in the middle region of Qilian Mountains. Journal of Desert Research (中国沙漠), 21(2), 135-140. (in Chinese with English abstract) |
[26] | Wu XD (吴祥定) (1990). Tree-ring and Climate Change (树木年轮与气候变化). Meteorology Press, Beijing. 65-75. (in Chinese) |
[27] |
Yu DP, Gu HY, Wang JD (2005). Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain. Journal of Forestry Research, 16, 187-192.
DOI URL |
[28] | Zhang QB, Hebda RJ (2004). Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada. Canadian Journal of Forest Research, 34, 1946-1954. |
[29] | Zheng YH (郑永宏), Zhu HF (朱海峰), Zhang YX (张永香), Shao XM (邵雪梅) (2009). Relationships between Sabina przewalskii radial growth and climatic factors at upper timberlines in eastern mountains region of Qaidam Basin. Chinese Journal of Applied Ecology (应用生态学报), 20, 507-512. (in Chinese with English abstract) |
[30] | Zhu HF (朱海峰), Wang LL (王丽丽), Shao XM (邵雪梅), Fang XQ (方修琦) (2004). Tree ring-width response of Picea schrenkiana to climate change. Acta Geographica Sinica (地理学报), 59, 863-870. (in Chinese with English abstract) |
[1] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[2] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[3] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[4] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[5] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[8] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
[9] | 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. 锡林郭勒植被NDVI时空变化及其驱动力定量分析[J]. 植物生态学报, 2019, 43(4): 331-341. |
[10] | 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比[J]. 植物生态学报, 2019, 43(12): 1061-1078. |
[11] | 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. 南盘江流域云南松径向生长对气候暖干化的响应[J]. 植物生态学报, 2019, 43(11): 946-958. |
[12] | 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应[J]. 植物生态学报, 2018, 42(6): 629-639. |
[13] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[14] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[15] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19