植物生态学报 ›› 2007, Vol. 31 ›› Issue (1): 102-109.DOI: 10.17521/cjpe.2007.0013
于水强, 王政权(), 史建伟, 全先奎, 梅莉, 孙玥, 贾淑霞, 于立忠
收稿日期:
2005-07-11
接受日期:
2006-01-19
出版日期:
2007-07-11
发布日期:
2007-01-30
通讯作者:
王政权
作者简介:
* E-mail: wqsilv@mail.nefu.edu.cn基金资助:
YU Shui-Qiang, WANG Zheng-Quan(), SHI Jian-Wei, QUAN Xian-Kui, MEI Li, SUN Yue, JIA Shu-Xia, YU Li-Zhong
Received:
2005-07-11
Accepted:
2006-01-19
Online:
2007-07-11
Published:
2007-01-30
Contact:
WANG Zheng-Quan
摘要:
树木细根(直径≤2 mm)是控制树木与其周围环境进行能量交换和物质分配的主要器官,其寿命的长短决定了每年被分配到土壤中碳和养分的数量。我们使用微根管技术监测了水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)细根生长、衰老、死亡的动态过程,运用Kaplan-Meier方法估计细根存活率及中位值寿命(Median root lifespan,MRL),做存活曲线(Survival curve)。用对数秩检验(Log-rank test)比较不同树种、不同土壤层次、不同季节出生的细根寿命差异程度。研究结果表明,随观测期延长,细根存活率逐渐下降,在观测期内的各个时点上,水曲柳细根存活率显著高于落叶松(p<0.001),说明水曲柳细根寿命明显长于落叶松,两树种的MRL分别为111±7 d和77±4 d。无论是水曲柳还是落叶松,土壤下层(20~40 cm)的细根存活率始终高于上层(0~20 cm),差异程度均达到显著水平(p落=0.001, p水<0.001),落叶松上下两层的MRL分别为62±11 d 和95±11 d,水曲柳为111±6 d和124±20 d,这与土壤环境因子的垂直分布有关,下层土壤延长细根寿命。不同同龄根群(Root cohort)的细根寿命不同。落叶松夏季产生的细根存活率显著高于春季(p=0.042),中位值寿命分别是MRL春=47±13 d,MRL夏=82±6 d。水曲柳不同细根同龄根群与落叶松具有相似的季节性,夏季产生的细根存活率在同一时间点上要显著高于春季(p=0.014)。
于水强, 王政权, 史建伟, 全先奎, 梅莉, 孙玥, 贾淑霞, 于立忠. 水曲柳和落叶松细根寿命的估计. 植物生态学报, 2007, 31(1): 102-109. DOI: 10.17521/cjpe.2007.0013
YU Shui-Qiang, WANG Zheng-Quan, SHI Jian-Wei, QUAN Xian-Kui, MEI Li, SUN Yue, JIA Shu-Xia, YU Li-Zhong. ESTIMATING FINE-ROOT LONGEVITY OF FRAXINUS MANDSHURICA AND LARIX GMELINII USING MINI-RHIZOTRONS. Chinese Journal of Plant Ecology, 2007, 31(1): 102-109. DOI: 10.17521/cjpe.2007.0013
土层 Soil depth (cm) | 土壤温度 Soil temperature (℃) | |||||
---|---|---|---|---|---|---|
5月May | 6月June | 7月July | 8月Aug. | 9月Sept. | 10月Oct. | |
5 | 12.5 | 19.5 | 22.3 | 21.9 | 14.3 | 5.8 |
10 | 10.7 | 18.0 | 21.2 | 21.2 | 14.2 | 6.2 |
15 | 9.7 | 17.2 | 20.7 | 20.8 | 14.3 | 6.5 |
20 | 8.7 | 16.3 | 20.0 | 20.6 | 14.5 | 6.9 |
40 | 7.6 | 15.0 | 19.2 | 20.1 | 15.6 | 8.3 |
表1 帽儿山实验林场生态站生长季中各土层的温度
Table 1 Soil temperature of all soil layers in experiment forest in Maoershan during growth season
土层 Soil depth (cm) | 土壤温度 Soil temperature (℃) | |||||
---|---|---|---|---|---|---|
5月May | 6月June | 7月July | 8月Aug. | 9月Sept. | 10月Oct. | |
5 | 12.5 | 19.5 | 22.3 | 21.9 | 14.3 | 5.8 |
10 | 10.7 | 18.0 | 21.2 | 21.2 | 14.2 | 6.2 |
15 | 9.7 | 17.2 | 20.7 | 20.8 | 14.3 | 6.5 |
20 | 8.7 | 16.3 | 20.0 | 20.6 | 14.5 | 6.9 |
40 | 7.6 | 15.0 | 19.2 | 20.1 | 15.6 | 8.3 |
土层 Soil depth (cm) | 5月 May | 6月June | 7月 July | 8月Aug. | 9月 Sept. | 10月Oct. |
---|---|---|---|---|---|---|
水曲柳 Fraxinus mandshurica | ||||||
0~10 | 24.69(1.36)a | 29.66(2.74)a | 26.75(1.33)a | 37.87(2.38)a | 19.00(1.41)a | 19.49(1.81)a |
10~20 | 11.39(0.71)b | 13.62(1.02)b | 12.57(0.89)b | 17.84(1.15)b | 9.81(0.74)b | 11.81(0.88)b |
20~30 | 5.55(0.59)c | 9.12(0.67)b | 5.24(0.38)c | 7.90(0.66)c | 5.63(0.43)c | 6.36(0.55)c |
落叶松 Larix gmelinii | ||||||
0~10 | 18.46(1.30)a | 17.49(0.99)a | 21.05(1.38)a | 24.02(1.84)a | 18.88(1.99)a | 17.86(2.26)a |
10~20 | 13.03(0.79)b | 14.02(0.93)b | 11.33(0.84)b | 9.35(0.96)b | 11.64(0.92)b | 9.57(0.72)b |
20~30 | 8.09(0.62)c | 9.80(0.67)c | 7.38(0.63)c | 5.54(0.57)c | 7.99(0.80)b | 8.56(0.84)b |
表2 水曲柳和落叶松林地生长季中各土层有效N含量(g·kg-1)
Table 2 Soil available N (g·kg-1) in depth during growth season in experimental plots of Faxinus mandshurica and Larix gmelinii
土层 Soil depth (cm) | 5月 May | 6月June | 7月 July | 8月Aug. | 9月 Sept. | 10月Oct. |
---|---|---|---|---|---|---|
水曲柳 Fraxinus mandshurica | ||||||
0~10 | 24.69(1.36)a | 29.66(2.74)a | 26.75(1.33)a | 37.87(2.38)a | 19.00(1.41)a | 19.49(1.81)a |
10~20 | 11.39(0.71)b | 13.62(1.02)b | 12.57(0.89)b | 17.84(1.15)b | 9.81(0.74)b | 11.81(0.88)b |
20~30 | 5.55(0.59)c | 9.12(0.67)b | 5.24(0.38)c | 7.90(0.66)c | 5.63(0.43)c | 6.36(0.55)c |
落叶松 Larix gmelinii | ||||||
0~10 | 18.46(1.30)a | 17.49(0.99)a | 21.05(1.38)a | 24.02(1.84)a | 18.88(1.99)a | 17.86(2.26)a |
10~20 | 13.03(0.79)b | 14.02(0.93)b | 11.33(0.84)b | 9.35(0.96)b | 11.64(0.92)b | 9.57(0.72)b |
20~30 | 8.09(0.62)c | 9.80(0.67)c | 7.38(0.63)c | 5.54(0.57)c | 7.99(0.80)b | 8.56(0.84)b |
[1] |
Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty C, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quality and form of nitrogen availability: a comparison of two methods. Oecologia, 66,317-321.
DOI URL PMID |
[2] | Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003). Multiplerisk factors in root survivorship: a four-year study in Concord grape. New Phytologist, 158,489-501. |
[3] |
Black KE, Harbron CG, Franklin M, Atkinson D, Hooker JE (1998). Differences in root longevity of some tree species. Tree Physiology, 18,259-264.
URL PMID |
[4] | Bloomfield J, Vogt KA, Wargo PM (1996). Tree root turnover and senescence. In: Waisel AEY, Kafkafi U eds. Plant Roots: the Hidden Half 2nd edn. Marcel Dekker Press, New York,363-382. |
[5] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan Northern hardwood forests. Oecologia, 125,389-399.
DOI URL PMID |
[6] | Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1996). Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 26,1761-1768. |
[7] | Cheng YH(程云环), Han YZ(韩有志), Wang QC(王庆成), Wang ZQ(王政权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelinii plantation. Acta Phytoecologica Sinica (植物生态学报), 29,403-410. (in Chinese with English abstract) |
[8] | Coleman MD, Dickson RE, Isebrands JG (2000). Contrasting fine root production, survival and soil CO 2 efflux in pine and poplar plantations. Plant and Soil, 225,129-139. |
[9] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147,33-42. |
[10] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27,1-60. |
[11] | Eissenstat DM, Yanai RD (2002). Root life span, efficiency, and turnover. In: Waisel AEY, Kafkafi U eds. Plant Roots: the Hidden Half 3rd edn. Marcel Dekker Press, New York,221-238. |
[12] | Fahey TJ, Hughes JW (1994). Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology, 82,533-548. |
[13] | Farrar JF, Jones DL (2000). The control of carbon acquisition by roots. New Phytologist, 147,43-53. |
[14] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147,13-31. |
[15] | Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73,1094-1104. |
[16] | Hendrick RL, Pregitzer KS (1993). Patterns of fine root mortality in two sugar maple forests. Nature, 361,59-61. |
[17] | Huang JH(黄建辉), Han XG(韩兴国), Chen LZ(陈灵芝) (1999). Advances in the research of (fine) root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19,270-277. (in Chinese with English abstract) |
[18] | Johnson MG, Phillips DL, Tingey DT, Storm MJ (2000). Effects of elevated CO 2, N-fertilization, and season on survival of ponderosa pine fine roots. Canadian Journal of Forest Research, 30,220-228. |
[19] |
Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45,263-289.
DOI URL PMID |
[20] | Joslin JD, Wolfe MH (1998). Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest. Plant and Soil, 204,165-174. |
[21] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154,389-398. |
[22] | Li LH(李凌浩), Lin P(林鹏), Xing XR(邢雪荣) (1998). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains. Chinese Journal of Applied Ecology (应用生态学报), 9,337-340. (in Chinese with English abstract) |
[23] | Liu GS(刘光菘), Jiang NH(蒋能慧), Zhang LD(张连第), Liu ZL(刘兆礼) (1996). Soil Physical and Chemical Analysis and Description of Soil Profiles (土壤理化分析与剖面描述). Standards Press of China, Beijing, 5-37. (in Chinese) |
[24] |
Majdi H (2001). Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in Northern Sweden. Tree Physiology, 21,1057-1061.
DOI URL PMID |
[25] | Majdi H, Nylund JE (1996). Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal short root? Plant and Soil, 185,305-309. |
[26] | Marshall JD, Waring RH (1985). Predicting fine root production and turnover by monitoring root starch and soil temperature. Canadian Journal of Forest Research, 15,791-800. |
[27] | Mei L (梅莉), Wang ZQ (王政权), Han YZ(韩有志), Gu JC(谷加存), Wang XR(王向荣), Cheng YH(程云环), Zhang XJ(张秀娟) (2006). Pattern of root standing biomass, specific root length and root length density in Manchurian ash plantation. Chinese Journal of Applied Ecology (应用生态学报), 17,1-4. (in Chinese with English abstract) |
[28] | Mei L(梅莉), Wang ZQ(王政权), Cheng YH(程云环), Guo DL(郭大立) (2004). A review: factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica (植物生态学报), 28,704-710. (in Chinese with English abstract) |
[29] | Nadelhoffer KJ, Aber JD, Melillo JM (1985). Fine root, net primary production, and soil nitrogen availability: a new hypothesis. Ecology, 66,1377-1390. |
[30] | Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147,3-12. |
[31] | Pregitzer KS (2003). Woody plants, carbon allocation and fine roots. New Phytologist, 158,419-430. |
[32] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72,293-309. |
[33] | Pregitzer KS, Hendrick RL, Fogel R (1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125,575-580. |
[34] | Pregitzer KS, King JS, Burton AJ (2000). Responses of tree fine roots to temperature. New Phytologist, 147,105-115. |
[35] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111,302-308.
DOI URL PMID |
[36] | Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS (1995). Atmospheric CO 2, soil nitrogen and turnover of fine roots. New Phytologist, 129,579-585. |
[37] |
Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16,333-343.
DOI URL PMID |
[38] | Schoettle A, Fahey TJ (1994). Foliage and fine root longevity in pines. Ecological Bulletins, 43,136-153. |
[39] | Smit AL, George E, Groenwold J (2000). Root observations and measurements at (tansparent) interfaces with soil. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC eds. Root Methods: a Handbook. Springer-Verlag, Berlin,235-271. |
[40] | Tierney GL, Fahey TJ (2001). Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant and Soil, 229,167-176. |
[41] | Wells CE, Eissenstat DM (2003). Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334. |
[42] |
Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: a case study in peach,Prunus persica (Rosaceae). American Journal of Botany, 89,79-87.
DOI URL PMID |
[43] | Zhang XQ(张小全) (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14,566-573. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[7] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[8] | 赵阳, 刘锦乾, 陈学龙, 杨萌萌, 曹家豪, 齐瑞, 曹秀文. 洮河上游紫果云杉种群结构特征[J]. 植物生态学报, 2020, 44(3): 266-276. |
[9] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[10] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[11] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
[12] | 周彤, 曹入尹, 王少鹏, 陈晋, 唐艳鸿. 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究[J]. 植物生态学报, 2018, 42(5): 526-538. |
[13] | 字洪标, 陈焱, 胡雷, 王长庭. 氮肥添加对川西北高寒草甸植物群落根系动态的影响[J]. 植物生态学报, 2018, 42(1): 38-49. |
[14] | 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8): 826-839. |
[15] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19