植物生态学报 ›› 2007, Vol. 31 ›› Issue (1): 118-128.DOI: 10.17521/cjpe.2007.0015
所属专题: 生态系统碳水能量通量
王文杰1, 祖元刚1,*(), 王辉民2,3, 杨逢建1, 三枝信子3, 小池孝良4, 山本晋5
收稿日期:
2004-12-04
接受日期:
2006-07-05
出版日期:
2007-12-04
发布日期:
2007-01-30
通讯作者:
祖元刚
作者简介:
* E-mail: zygorl@vip.hl.cn基金资助:
WANG Wen-Jie1, ZU Yuan-Gang1,*(), WANG Hui-Min2,3, YANG Feng-Jian1, Saigusa Nobuko3, Koike Takayoshi4, Yamamoto Susumu5
Received:
2004-12-04
Accepted:
2006-07-05
Online:
2007-12-04
Published:
2007-01-30
Contact:
ZU Yuan-Gang
摘要:
该文利用涡度协方差法和生理生态学方法(不同分量的累积和)获得的通量观测数据,对老山落叶松(Larix gmelinii)林(45°20' N, 127°34' E)的碳收支进行了分析。通过对每0.5 h所测数据进行的分析表明,能量平衡达到75%,说明涡度协方差法适应于本站的研究。较阴天气情况下,林分光照利用效率显著高于晴朗天气,可能归因于阴天较多的散射光。以单位土地面积计算发现,通过涡度协方差法计算的落叶松林生态系统的总初级生产力在20~50 μmol·m-2·s-1之间,远高于冠层叶片的总光合速率9.8~23.4 μmol·m -2·s-1 (平均值16.2 μmol·m -2·s-1),而当综合考虑冠层光合和林下植物光合作用时,两种方法测定结果吻合性较好,说明林下植物对落叶松林碳平衡有重要影响。在估计森林生态系统呼吸方面,以有风夜晚净生态系统交换量(NEE)来代表生态系统呼吸总量(3~9 μmol·m -2·s-1)低估了生态系统呼吸总量,粗略估计较生理生态学方法(不同呼吸分量的累积和)低估了50%左右(14.2 μmol·m -2·s-1)。结果发现两种方法在估计森林碳平衡方面存在一定的差异,呼吸量的估计差异应是今后研究的重点。
王文杰, 祖元刚, 王辉民, 杨逢建, 三枝信子, 小池孝良, 山本晋. 基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究. 植物生态学报, 2007, 31(1): 118-128. DOI: 10.17521/cjpe.2007.0015
WANG Wen-Jie, ZU Yuan-Gang, WANG Hui-Min, YANG Feng-Jian, Saigusa Nobuko, Koike Takayoshi, Yamamoto Susumu. PRELIMINARY STUDY OF CO<sub>2</sub> FLUX OF A LARCH FOREST BY EDDYCOVARIANCE AND ECOPHYSIOLOGICAL METHODS. Chinese Journal of Plant Ecology, 2007, 31(1): 118-128. DOI: 10.17521/cjpe.2007.0015
图2 2002年6月潜热(LE)、感热(H)和二氧化碳通量(NEE)的时间变化以及相应的光合有效辐射(PAR)、气温(Ta)以及饱和差(VPD)等环境因子的变化
Fig.2 Temporal variation of latent energy (LE), sensible energy (E) CO2 fluxes (NEE) and corresponding environmental variables including air temperature (Ta), photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) in June 2002
图3 落叶松林生态系统的总初级生产力(GPP)在不同天气情况下对光合有效辐射(PAR)响应 ■: 日均 PAR<400 μmol·m-2·s-1 Daily mean PAR<400 μmol·m-2·s-1 ◇: 日均 PAR>500 μmol·m-2·s-1 Daily mean PAR>500 μmol·m-2·s-1
Fig.3 Different responses of gross primary productity (GPP) to photosynthetic active radiation (PAR) in different weather condition
图4 有风夜晚(摩擦速度U*>0.20 m·s-1)生态系统呼吸速率(RE)与气温(Ta)的关系 部分数据是冬季数据
Fig.4 Temperature (Ta) dependence of ecosystem respiration rate(RE) at windy night (friction velocity U*>0.20 m·s-1) Part of the data was measured in winter
图5 落叶松、水曲柳和白桦冠层叶片净光合速率对光照的响应曲线
Fig.5 Light response curves of canopy species of Larix gmelinii, Franxinus mandshurica and Betulla platyphylla in June 2002
图6 土壤微生物、枯枝落叶分解和根系呼吸对土壤总呼吸的贡献 R、R-litter和Rtrench分别是指土壤总呼吸(包括枯枝落叶、土壤微生物和根系)、去除枯枝落叶土壤呼吸和去除枯枝落叶根系土壤呼吸 R, R-litter, Rtrench are total soil respiration (Soil-microbe+Root+Litter), soil respiration minus litter respiration, and soil respiration excluding root and litter, respectively Soil microbe、litter和root分别指土壤微生物、枯枝落叶和根系呼吸速率 Soil microbe, litter and root are three elements of soil respiration
Fig.6 Soil-microbe, litter decomposition, and root respiration contribution to total soil respiration
图7 3种树种叶片、树枝、树干呼吸速率的比较 落叶松和白桦树枝呼吸和3种树种的树干呼吸为2002年6月同期测定结果;水曲柳树枝呼吸测定结果为2004年5月补充测定结果 Except the branch respiration of Franxinus mandshurica were measured in May 2004, all other data of Betulla platyphylla and Larix gmelinii were measured in June 2002
Fig.7 Leaf, branch and stem respiration of three dominant trees in study site
碳平衡 Carbon budget | 涡度协方差法 Eddy covariance method | 生理生态学方法 Ecophysiological method | ||
---|---|---|---|---|
叶片水平 Leaf level | 器官面积指数 Organ area index (m2·m-2) | 生态系统水平 Ecosystem level | ||
总初级生产力Gross primary productivity (GPP)(μmol·m-2·s-1) | 20~50 | 林冠 Canopy:4.9~11.7(平均mean:8.1) | 2.0 | 9.8~23.4 (平均mean:16.2) |
草本 Understory herbs: 2.3~12.3 | 2.2 | 5.0~25.0 | ||
合计 Sum | 14.8~48.4 | |||
系统呼吸 Ecosystem respiration (μmol·m-2·s-1) | 3~9 | 树叶 Leaves 0.9~2.0(平均mean:1.9) | 2.0 | 1.8~4.0(平均mean:3.8) |
树枝 Branches 0.8~2.2(平均mean:1.1) | 0.5 | 0.4~1.1(平均mean:0.5) | ||
树干 Stems 4.1~5.6(平均mean:4.3) | 0.7 | 2.9-~3.9(平均mean:3.0) | ||
根系 Roots 2.4 | 1.0 | 2.4 | ||
土壤微生物 Soil microbes 2.8 | 1.0 | 2.8 | ||
枯枝落叶 Litters 1.8 | 1.0 | 1.8 | ||
合计 Sum | 14.2 |
表1 涡度协方差法和生理生理学方法对落叶松林初级生产力和呼吸总量估计的比较
Table 1 Comparison on the GPP and ecosystem respiration of the larch plantation estimated by eddy-covariance method and ecophysiological method at an instant level
碳平衡 Carbon budget | 涡度协方差法 Eddy covariance method | 生理生态学方法 Ecophysiological method | ||
---|---|---|---|---|
叶片水平 Leaf level | 器官面积指数 Organ area index (m2·m-2) | 生态系统水平 Ecosystem level | ||
总初级生产力Gross primary productivity (GPP)(μmol·m-2·s-1) | 20~50 | 林冠 Canopy:4.9~11.7(平均mean:8.1) | 2.0 | 9.8~23.4 (平均mean:16.2) |
草本 Understory herbs: 2.3~12.3 | 2.2 | 5.0~25.0 | ||
合计 Sum | 14.8~48.4 | |||
系统呼吸 Ecosystem respiration (μmol·m-2·s-1) | 3~9 | 树叶 Leaves 0.9~2.0(平均mean:1.9) | 2.0 | 1.8~4.0(平均mean:3.8) |
树枝 Branches 0.8~2.2(平均mean:1.1) | 0.5 | 0.4~1.1(平均mean:0.5) | ||
树干 Stems 4.1~5.6(平均mean:4.3) | 0.7 | 2.9-~3.9(平均mean:3.0) | ||
根系 Roots 2.4 | 1.0 | 2.4 | ||
土壤微生物 Soil microbes 2.8 | 1.0 | 2.8 | ||
枯枝落叶 Litters 1.8 | 1.0 | 1.8 | ||
合计 Sum | 14.2 |
[1] | Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000). Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances of Ecological Research, 30,113-176. |
[2] | Baldocchi DD, Vogel CA, Hall B (1997). Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agricultural and Forest Meteorology, 83,147-170. |
[3] |
Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998). A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282,442-446.
DOI URL PMID |
[4] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292,2320-2322.
URL PMID |
[5] | Fang JY(方精云), Ke JH(柯金虎), Tang ZR(唐志尧), Chen AP(陈安平) (2001). Implications and estimations of four terrestrial productivity parameters. Acta Phytoecologica Sinica (植物生态学报), 25,414-419. (in Chinese with English abstract) |
[6] | Goulden ML, Munger JW, Fan S, Daube BC, Wofsy SC (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2,169-182. |
[7] | Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997). Physiological responses of a black spruce forest to weather. Journal of Geophysical Research, 102,28987-28996. |
[8] | Gower ST, Richards JH (1990). Larches: deciduous conifers in an evergreen world. BioScience, 40,818-826. |
[9] | Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999). Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research, 104,31421-31434. |
[10] | Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 107 (D6),1-23. |
[11] | Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003). CO 2 and water vapor exchange of a larch forest in northern Japan. Tellus, 55B,244-257. |
[12] | Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994). Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75,134-150. |
[13] | Hollinger DY, Kelliher FM, Schulze E-D, Bauer G, Arneth A, Byers JN, Hunt JE, McSeveny TM, Kobak KI, Milukova I, Sogatchev A, Tatarinov F, Varlargin A, Ziegler W, Vygodskaya NN (1998). Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agricultural and Forest Meteorology, 90,291-306. |
[14] | Kaimal JC, Finnigan JJ (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, 289. |
[15] | Law BE, Ryan MG, Anthoni PM (1999). Seasonal and annual respiration of a Ponserosa pine ecosystem. Global Change Biology, 5,169-182. |
[16] | Law BE, Williams M, Anthoni PM, Baldocchi DD, Unsworth MH (2000). Measuring and modeling seasonal variation of carbon dioxide and water vapor exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biology, 6,613-630. |
[17] | Lavigne MB, Ryan MG, Anderson DE, Baldocchi DD, Crill PM, Fitzjarrald DR, Goulden ML, Gower ST, Massheder JM, McCaughey JH, Rayment M, Striegl RG (1997). Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scalling chamber measurements. Journal of Geophysical Research, 102,28977-28985. |
[18] | Lei TT, Koike T (1998). Functional leaf phenotypes for shaded and open environments of a dominant dwarf bamboo ( Sasa senanensis) in northern Japan. International Journal of Plant Science, 159,812-820. |
[19] | Ohashi M, Gyokusen K, Saito A (2000). Contribution of root respiration to total soil respiration in a Japanese cedar ( Cryptomeria japonica D.Don) artificial forest. Ecological Research, 15,323-333. |
[20] |
Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292,2316-2319.
DOI URL PMID |
[21] | Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002). Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology, 112,203-215. |
[22] | Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Calentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN (1999). Productivity of forests in the Eurosiberia boreal region and their potential to act as a carbon sink—a synthesis. Global Change Biology, 5,703-722. |
[23] | Shen YG (沈允钢), Shi JN (施教耐), Xu DQ (许大全) (1998). Dynamic Photosynthesis (动态光合作用). Science Press, Beijing, 157. |
[24] | Shi F, Wang WJ, Kitaoka S, Koike T, Matsuura Y (2001). Comparative studies of soil respiration in Sakhalin fir plantation and larch plantation by trench box method. Transaction of Japanese Forestry Society, Hokkaido, 49,36-39. (in Japanese). |
[25] |
Tans PP, Fung IY, Takahashi T (1990). Observational constraints on the global atmospheric CO 2 budget. Science, 247,1431-1438.
URL PMID |
[26] |
Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Gudmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404,861-865.
URL PMID |
[27] | Wang H, Saigusa N, Yamamoto S, Kondo H, Hirano T, Toriyama A, Fujinuma Y (2004). Net ecosystem CO 2 exchange over a larch forest in Hokkaido, Japan. Atmospheric Environment, 38,7021-7032. |
[28] | Wang H, Saigusa N, Zu Y, Yamamoto S, Kondo H, Yang F, Wang W, Hirano T, Fujinuma Y (2005a). Response of CO 2 flux to environmental variables in two larch forest ecosystems in East Asia. Phyton-Annales Rei Botanicae 45,339-346. |
[29] | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a larch ( Larix gmelini) plantation in Northeast China. Acta Botanica Sinica, 45,1387-1397. |
[30] | Wang WJ, Zu YG, Wang HM, Hirano T, Sasa K, Koike T (2005b). Effect of collar insertion on soil respiration in a larch forest measured with a Li-6400 soil CO 2 flux system. Journal of Forest Research, 10,57-60. |
[31] | Wang WJ, Zu YG, Wang HM, Matsuura Y, Sasa K, Koike T (2005c). Plant biomass and productivity of Larix gmelinii forest ecosystems in northeast China: intra- and inter- species comparison. Eurasian Journal of Forest Research, 8,21-41. |
[32] | Wang WJ(王文杰), Shi FC(石福臣), Zu YG(祖元刚), Yang FJ(杨逢建), Koike T, Mao ZJ(毛子军) (2002). Construction and development of CO 2 flux networks on terrestrial ecosystem. Journal of Northeast Forestry University, 30(4),57-61. |
[33] | Wang WJ(王文杰), Yu JH(于景华), Mao ZJ(毛子军), Zu YG(祖元刚) (2003). Study method and research advance in forest CO 2 flux. Chinese Journal of Ecology (生态学杂志), 22(5),102-107. (in Chinese with English abstract) |
[34] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106,85-100. |
[35] | Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113,223-243. |
[36] | Yu GR(于贵瑞), Sun XM(孙晓敏) (2006). Principles of Flux Measurement in Terrestrial Ecosystems(陆地生态系统通量观测的原理与方法). Higher Education Press, Beijing, 508. |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[3] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[4] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[5] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[6] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[7] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[8] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[9] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[10] | 李永强, 董智, 丁晨曦, 王雅楣, 贾继文, 张佳楠, 焦树英. 山东省暖性草丛生态系统碳库现状和碳通量季节变化特征[J]. 植物生态学报, 2018, 42(3): 277-287. |
[11] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[12] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[13] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[14] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
[15] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19