植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1238-1247.DOI: 10.3773/j.issn.1005-264x.2008.06.004
收稿日期:
2008-04-01
接受日期:
2008-07-14
出版日期:
2008-04-01
发布日期:
2008-11-30
通讯作者:
卫星
作者简介:
*(weixing94@163.com)基金资助:
WEI Xing1,*(), LIU Ying1, CHEN Hai-Bo1,2
Received:
2008-04-01
Accepted:
2008-07-14
Online:
2008-04-01
Published:
2008-11-30
Contact:
WEI Xing
摘要:
细根是树木吸收水分养分的主要器官, 其生长与周转对森林生产力及生态系统物质循环具有重要的影响。为了更好地认识细根的结构特征与功能及其在根序中的分布, 采用石蜡切片方法对黄波罗(Phellodendron amurense) 1~5级根解剖结构(直径、皮层组织、通道细胞数目、维管束发育和菌根侵染等)进行了观察统计。研究表明: 细根直径、维管束直径以及维管束在根中所占的比例随根序增加而增加。1~3级根皮层层数、皮层薄壁细胞直径相近, 但总体呈减少趋势, 部分4级根有少量残留的皮层, 而成熟的5级根已经没有表皮及皮层组织。1~3级根具有通道细胞, 菌丝侵染率均较高; 4、5级根无通道细胞, 也无菌丝侵染。1、2级根是初生根, 无木栓层; 4、5级根是次生根, 具有完整的木栓层; 3级根中既有初生根, 也有次生根, 并逐渐形成木栓层。说明随根序升高, 细根吸收能力减弱, 输导能力增加, 抵御环境胁迫的能力增加, 有利于延长寿命。根据解剖结构、直径和根序的关系, 将黄波罗前3级根中直径小于0.8 mm、未形成连续木栓形成层、具有通道细胞的根定义为细根。
卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 2008, 32(6): 1238-1247. DOI: 10.3773/j.issn.1005-264x.2008.06.004
WEI Xing, LIU Ying, CHEN Hai-Bo. ANATOMICAL AND FUNCTIONAL HETEROGENEITY AMONG DIFFERENT ROOT ORDERS OF PHELLODENDRON AMURENSE. Chinese Journal of Plant Ecology, 2008, 32(6): 1238-1247. DOI: 10.3773/j.issn.1005-264x.2008.06.004
图1 黄波罗1~5级根维管束直径V、细根直径R及维/根比V/R
Fig. 1 The vascular bundle diameter (V), the root diameter (R) and V/R among the first five order roots of Phellodendron amurense
根序 Root order | ||||||
---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | ||
平均细根直径 Mean root diameter | 最小值到最大值 From Min. to Max. (mm) | 0.38 ~ 0.73 | 0.47 ~ 0.62 | 0.47 ~ 0.78 | 0.79 ~ 1.59 | 1.95 ~ 2.43 |
变异系数 CV (%) | 16.12 | 9.62 | 14.53 | 20.11 | 6.91 | |
维管束直径 Vascular bundle diameter | 最小值到最大值 From Min. to Max. (mm) | 0.08 ~ 0.19 | 0.11 ~ 0.22 | 0.12 ~ 0.38 | 0.63 ~ 1.37 | 1.69 ~ 2.07 |
变异系数 CV (%) | 21.86 | 18.71 | 33.65 | 23.83 | 6.72 |
表1 黄波罗1~5级根直径及维管束直径最大值、最小值和变异系数
Table 1 The minimal and maximal diameters, the coefficients of variations of root and vascular bundle diameter among the first five orders roots of Phellodendron amurense
根序 Root order | ||||||
---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | ||
平均细根直径 Mean root diameter | 最小值到最大值 From Min. to Max. (mm) | 0.38 ~ 0.73 | 0.47 ~ 0.62 | 0.47 ~ 0.78 | 0.79 ~ 1.59 | 1.95 ~ 2.43 |
变异系数 CV (%) | 16.12 | 9.62 | 14.53 | 20.11 | 6.91 | |
维管束直径 Vascular bundle diameter | 最小值到最大值 From Min. to Max. (mm) | 0.08 ~ 0.19 | 0.11 ~ 0.22 | 0.12 ~ 0.38 | 0.63 ~ 1.37 | 1.69 ~ 2.07 |
变异系数 CV (%) | 21.86 | 18.71 | 33.65 | 23.83 | 6.72 |
图2 黄波罗1~5级根横切片(I -V) I: 1级根 The first order root II: 2级 The second order root III: 3级 The third order root IV: 4级 The fourth order root V: 5级 The fifth order root (1) 自然光下 Under bright light (2) 荧光下 Under fluorescence c: 皮层细胞 Cortical cell ep: 表皮 Epidermis ex: 外皮层 Exodermis pe: 周皮 Periderm pl: 木栓层 Phellem v: 维管束 Vascular bundle xl: 木质部 Xylem Bar=100 μm
Fig. 2 Transverse sections of the first to fifth order roots of Phellodendron amurense
图3~11 黄波罗细根皮层及中柱结构特征。 3. 黄波罗1级根表皮、外皮层及皮层薄壁细胞。4. 黄波罗1级根外皮层上通道细胞。5. 黄波罗1级根皮层薄壁细胞内侵染大量的菌丝。 6. 黄波罗1级根内形成的气腔。7. 黄波罗2级根内形成的气腔。 8. 黄波罗细根内皮层凯氏带(自然光)。9. 黄波罗细根内皮层凯氏带(荧光)。 10. 黄波罗2级根产生的新根。 11. 黄波罗3级根不连续木栓层 ac: 气腔 Air cavity c: 皮层细胞 Cortical cell cb: 凯氏带 Casparian band cp: 皮层薄壁细胞 Cotical parenchyma en: 内皮层 Endodermis ep: 表皮 Epidermis ex: 外皮层 Exodermis pc: 通道细胞 Passage cell m: 菌丝 Mycorrhizae pl: 木栓层 Phellem xl: 木质部 Xylem
Figs. 3-11 The cortex and stele characteristics of Phellodendron amurense fine roots. 3. The epidermis, exodermis and cortical parenchyma of the first order root of P. amurense. 4. Transverse section of the first order root of P. amurense, showing the passage cell in exodermis. 5. Transverse section of the first order root of P. amurense, showing lots of maccorizal in the cortical parenchyma. 6. The air cavity occurred in the first order roots of P. amurense. 7. The air cavity occurred in the second order roots of P. amurense. 8. The casparian band in endodermis of P. amurense under bright light. 9. The casparian band in endodermis of P. amurense under fluorescence. 10. The new root emerged from the second order root of P. amurense. 11. The inconsecutive phellem in the third order root of P. amurense
根级 Root order | |||||
---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |
皮层薄壁组织 Cortical parenchyma | + | + | + | 有少部分Partially | - |
皮层薄壁细胞直径 Diameter of cortical cells (μm) | 177.74 ± 6.95 | 175.59 ± 5.83 | 176.04 ± 4.50 | 0 | 0 |
皮层层数 Cortex layers | 9.94 ± 0.23 | 9.43 ± 0.17 | 9.13 ± 0.23 | 0 | 0 |
通道细胞数目 No. of passage cell | 19.23 ± 1.67 | 20.54 ± 1.31 | 22.69 ± 1.92 | 0 | 0 |
菌丝侵染 Mycorrhizae infection | + | + | + | - | - |
菌丝侵染度 The degree of mycorrhizae | 2.34 ± 0.11 | 2.28 ± 0.07 | 1.88 ± 0.16 | 0 | 0 |
维管形成层 Vascular cambium | - | - | + | + | + |
次生生长 Secondary growth | 0 | 0 | 47% | 100% | 100% |
木栓形成层 Phellogen | 0 | 0 | 47% | 100% | 100% |
表2 黄波罗1~5级根部分解剖特征(平均值±标准误差)
Table 2 Anatomical characteristics of the first five order roots of Phellodendron amurense (mean±SE)
根级 Root order | |||||
---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |
皮层薄壁组织 Cortical parenchyma | + | + | + | 有少部分Partially | - |
皮层薄壁细胞直径 Diameter of cortical cells (μm) | 177.74 ± 6.95 | 175.59 ± 5.83 | 176.04 ± 4.50 | 0 | 0 |
皮层层数 Cortex layers | 9.94 ± 0.23 | 9.43 ± 0.17 | 9.13 ± 0.23 | 0 | 0 |
通道细胞数目 No. of passage cell | 19.23 ± 1.67 | 20.54 ± 1.31 | 22.69 ± 1.92 | 0 | 0 |
菌丝侵染 Mycorrhizae infection | + | + | + | - | - |
菌丝侵染度 The degree of mycorrhizae | 2.34 ± 0.11 | 2.28 ± 0.07 | 1.88 ± 0.16 | 0 | 0 |
维管形成层 Vascular cambium | - | - | + | + | + |
次生生长 Secondary growth | 0 | 0 | 47% | 100% | 100% |
木栓形成层 Phellogen | 0 | 0 | 47% | 100% | 100% |
细根 Fine roots | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |||||||||||
n | r | p | n | r | p | n | r | p | n | r | p | n | r | p | |
根直径×维管束直径 Root diameter × Vascular bundle diameter | 20 | 0.874* | 0.001 | 20 | 0.482* | 0.043 | 20 | 0.882** | 0.001 | 10 | 0.969** | 0.001 | 10 | 0.991** | 0.008 |
根直径×维/根 Root diameter × The ratio of vascular bundle to root diameter | 20 | 0.229 | 0.334 | 20 | 0.03 | 0.906 | 20 | 0.782** | 0.001 | 10 | 0.388 | 0.267 | 10 | 0.354 | 0.316 |
根直径×皮层薄壁细胞直径 Root diameter × Diameter of cotical parenchyma | 20 | 0.955** | 0.001 | 18 | 0.884** | 0.011 | 19 | 0.627** | 0.004 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×皮层层数 Root diameter × Cortex layers | 15 | 0.616* | 0.014 | 14 | 0.620* | 0.018 | 14 | 0.433 | 0.122 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×通道细胞数目 Root diameter × Numbers of passage cell | 20 | 0.733** | 0.001 | 18 | 0.268 | 0.282 | 19 | 0.123 | 0.017 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×菌根侵染度 Root diameter × The degree of mycorrhizae | 19 | 0.339 | 0.155 | 20 | -0.016 | 0.951 | 19 | -0.011 | 0.966 | 10 | 0 | 0 | 10 | 0 | 0 |
菌根侵染度×维管束直径 Degree of micorrhizae × Vascular bundle diameter | 19 | 0.231 | 0.340 | 18 | -0.309 | 0.213 | 19 | -0.4 | 0.09 | ||||||
菌根侵染度×维/根 Degree of micorrhizae × The ratio of vascular bundle to root diameter | 19 | -0.074 | 0.762 | 18 | -0.351 | 0.153 | 19 | -0.547* | 0.015 | ||||||
菌根侵染度×通道细胞数目 Degree of micorrhizae × Numbers of passage cell | 19 | -0.06 | 0.809 | 20 | -0.179 | 0.449 | 19 | -0.054 | 0.826 | ||||||
菌根侵染度×皮层薄壁细胞直径 Degree of micorrhizae × Diameter of cotical parenchyma | 19 | 0.378 | 0.110 | 20 | 0.423 | 0.063 | 19 | 0.26 | 0.282 | ||||||
菌根侵染度×皮层层数 Degree of micorrhizae × Cortex layers | 14 | 0.711** | 0.004 | 14 | -0.048 | 0.871 | 14 | 0.441 | 0.115 |
表3 黄波罗1~5级根直径、菌根侵染度与解剖结构的相关性分析
Table 3 The correlation among root diameter, degree of micorrhizae and anatomical structures of the first five order roots of Phellodendron amurense
细根 Fine roots | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |||||||||||
n | r | p | n | r | p | n | r | p | n | r | p | n | r | p | |
根直径×维管束直径 Root diameter × Vascular bundle diameter | 20 | 0.874* | 0.001 | 20 | 0.482* | 0.043 | 20 | 0.882** | 0.001 | 10 | 0.969** | 0.001 | 10 | 0.991** | 0.008 |
根直径×维/根 Root diameter × The ratio of vascular bundle to root diameter | 20 | 0.229 | 0.334 | 20 | 0.03 | 0.906 | 20 | 0.782** | 0.001 | 10 | 0.388 | 0.267 | 10 | 0.354 | 0.316 |
根直径×皮层薄壁细胞直径 Root diameter × Diameter of cotical parenchyma | 20 | 0.955** | 0.001 | 18 | 0.884** | 0.011 | 19 | 0.627** | 0.004 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×皮层层数 Root diameter × Cortex layers | 15 | 0.616* | 0.014 | 14 | 0.620* | 0.018 | 14 | 0.433 | 0.122 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×通道细胞数目 Root diameter × Numbers of passage cell | 20 | 0.733** | 0.001 | 18 | 0.268 | 0.282 | 19 | 0.123 | 0.017 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×菌根侵染度 Root diameter × The degree of mycorrhizae | 19 | 0.339 | 0.155 | 20 | -0.016 | 0.951 | 19 | -0.011 | 0.966 | 10 | 0 | 0 | 10 | 0 | 0 |
菌根侵染度×维管束直径 Degree of micorrhizae × Vascular bundle diameter | 19 | 0.231 | 0.340 | 18 | -0.309 | 0.213 | 19 | -0.4 | 0.09 | ||||||
菌根侵染度×维/根 Degree of micorrhizae × The ratio of vascular bundle to root diameter | 19 | -0.074 | 0.762 | 18 | -0.351 | 0.153 | 19 | -0.547* | 0.015 | ||||||
菌根侵染度×通道细胞数目 Degree of micorrhizae × Numbers of passage cell | 19 | -0.06 | 0.809 | 20 | -0.179 | 0.449 | 19 | -0.054 | 0.826 | ||||||
菌根侵染度×皮层薄壁细胞直径 Degree of micorrhizae × Diameter of cotical parenchyma | 19 | 0.378 | 0.110 | 20 | 0.423 | 0.063 | 19 | 0.26 | 0.282 | ||||||
菌根侵染度×皮层层数 Degree of micorrhizae × Cortex layers | 14 | 0.711** | 0.004 | 14 | -0.048 | 0.871 | 14 | 0.441 | 0.115 |
[1] |
Aber JD, Melillo JM, Nadelhoffer KJ (1985). Fine root turnover in forest ecosystems in relation to quality and form of nitrogen availability: a comparison of two methods. Oecologia, 66,317-321.
DOI URL PMID |
[2] | Burton AJ, Pregitzer KS, Zogg GP (1996). Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 26,1761-1768. |
[3] | Eissenstat DM, Achor DS (1999). Anatomical characteristics of roots of Citrus rootstocks that vary in specific root length. New Phytologist, 141,309-321. |
[4] | Esau K (1964). Plant Anatomy. John Wiley,New York. |
[5] | Fahey TJ, Arthur MA (1994). Further studies of root decomposition following harvest of a northern hardwood forest. Forest Science, 40,618-629. |
[6] | Fitter AH (1985). Functional significance of root morphology and root system architecture. In: Fitter AH, Atinson D, Read DJ, Usher MB eds. Ecological Interaction in Soil Plant Microbes and Animals. Special Bulletin Number 4 of British Ecological Society. Blackwell Scientific Publication, Oxford, 87-106. |
[7] | Gordon WS, Jackson RB (2000). Nutrient concentration in fine roots. Ecology, 81,275-280. |
[8] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140,450-457.
URL PMID |
[9] | Hendrick RL, Pregitzer KS (1993). Patterns of fine root mortality in two sugar maple forests. Nature, 361,59-61. |
[10] | Hishi T, Takeda H (2005). Life cycles of individual roots in fine root system of Chamaecyparis obtuse Sieb. et Zucc. Journal of Forest Research, 10,181-187. |
[11] | Hishi T (2007). Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. Journal of Forest Research, 12,126-133. |
[12] | Joslin JD, Henderson GS (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science, 33,330-346. |
[13] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154,389-398. |
[14] | Liu M (刘穆) (2001). Spermatophyte Morphology Anatomy(种子植物形态解剖学导论). Science Press,Beijing. (in Chinese) |
[15] | MacFall JS, Johnson GA, Kramer PJ (1991). Comparative water up-take by roots of different ages in seedlings of loblolly pine ( Pinus taeda L.). New Phytologist, 119,551-560. |
[16] | Majdi H, Damm E, Nylund JE (2001). Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytologist, 150,195-202. |
[17] | McKenzie EB, Peterson CA (1995). Root browning in Pinus banksiana Lamn. and Eucalyptus pilularis Sm. 2. Anatomy and permeability of the cork zone. Botanica Acta, 108,138-143. |
[18] | Nadelhoffer KJ, Aber JD, Melillo JM (1985). Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology, 63,1481-1490. |
[19] | Norby RJ, Jackson RT (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147,3-12. |
[20] | Persson HA (1978). Root dynamics in a young Scots pine stand in central Sweden. Oikos, 30,508-519. |
[21] | Peterson CA, Enstone DE (1996). Functions of passage cells in the endodermis and exodermis of roots. Physiologia Plantarum, 97,592-598. |
[22] | Peterson CA, Enstone DE, Taylor JH (1999). Pine root structure and its potential significance for root function. Plant and Soil, 217,205-213. |
[23] | Pregitzer KS (2002). Fine roots of trees—a new perspective. New Phytologist, 154,267-273. |
[24] | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick R (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72,293-309. |
[25] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111,302-308.
DOI URL PMID |
[26] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak D (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18,665-670.
DOI URL PMID |
[27] | Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 73,643-662. |
[28] | Steudle E, Peterson CA (1998). How does water get through roots. Journal of Experimental Botany, 49,775-788. |
[29] | Taylor JH, Peterson CA (2000). Morphometric analysis of Pinus banksiana Lamb. root anatomy during a 3-month field study. Trees, 14,239-247. |
[30] | Tierney GL, Fahey TJ (2002). Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research, 32,1692-1697. |
[31] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15,303-377. |
[32] | Vogt KA, Persson H (1991). Measuring growth and development of roots. In: Lassoie JPN, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boston, 477-501. |
[33] | Wang XR (王向荣), Wang ZQ (王政权), Han YZ (韩有志), Gu JC (谷加存), Guo DL (郭大力), Mei L (梅莉) (2005). Variations of fine root diameter with root order in manchurian ash and dahurian larch plantations. Acta Phytoecologica Sinica (植物生态学报), 29,871-877. (in Chinese with English abstract) |
[34] | Wells CE, Eissenstat DM (2003). Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334. |
[35] | Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameters. Ecology, 82,882-892. |
[36] | Zhang XQ (张小全) (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14,566-573. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[8] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[9] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[10] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[11] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[12] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[13] | 高璐鑫, 兰天元, 赵志霞, 邓舒雨, 熊高明, 谢宗强, 申国珍. 中国中亚热带北部灌丛群落植物空间周转及其驱动因素[J]. 植物生态学报, 2022, 46(11): 1411-1421. |
[14] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[15] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19