植物生态学报 ›› 2011, Vol. 35 ›› Issue (11): 1156-1166.DOI: 10.3724/SP.J.1258.2011.01156
张彩虹1,2, 张雷明1, 刘杏认1,2, 辛晓平3, 李胜功1,*()
收稿日期:
2011-06-17
接受日期:
2011-08-23
出版日期:
2011-06-17
发布日期:
2011-11-07
通讯作者:
李胜功
作者简介:
*(E-mail:lisg@igsnrr.ac.cn)
ZHANG Cai-Hong1,2, ZHANG Lei-Ming1, LIU Xing-Ren1,2, XIN Xiao-Ping3, LI Sheng-Gong1,*()
Received:
2011-06-17
Accepted:
2011-08-23
Online:
2011-06-17
Published:
2011-11-07
Contact:
LI Sheng-Gong
摘要:
采用凋落物分解袋法, 研究了呼伦贝尔草甸草原主要优势种贝加尔针茅(Stipa baicalensis)根系组织和地上部分凋落物分解的季节动态以及凋落物的放置位置(置于地表和15 cm土壤表层)对分解的影响。结果表明, 置于表层土壤中的根系组织和地上部分凋落物的分解速率比置于地表的快, 但是根系组织在两个放置位置分解的差异不显著。无论置于地表还是置于表层土壤中, 地上部分凋落物的分解均快于根系组织的凋落物分解。在分解过程中, 凋落物碳(C)损失的季节变化模式与重量损失相似; 而氮(N)变化模式明显不同, 地上部分凋落物表现为释放—累积—释放, 根系则表现为释放—累积, 并且地上部分或者根系在不同放置位置中N含量变化的差异较小。地上部分和根系组织凋落物的初始化学组成的差异可能是导致其分解过程差异显著的主要原因, 其次的原因才是土壤含水量。因此, 该地区未来环境温度、湿度因子的变化将会显著影响贝加尔针茅地上部分凋落物的分解过程, 而对根系组织凋落物的分解作用较小。
张彩虹, 张雷明, 刘杏认, 辛晓平, 李胜功. 呼伦贝尔草甸草原优势种贝加尔针茅根系组织和地上部分凋落物的分解. 植物生态学报, 2011, 35(11): 1156-1166. DOI: 10.3724/SP.J.1258.2011.01156
ZHANG Cai-Hong, ZHANG Lei-Ming, LIU Xing-Ren, XIN Xiao-Ping, LI Sheng-Gong. Root tissue and shoot litter decomposition of dominant species Stipa baicalensis in Hulun Buir meadow steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1156-1166. DOI: 10.3724/SP.J.1258.2011.01156
化学组成 Chemical composition | 地上部分凋落物 Shoot litter | 根系凋落物 Root litter | |||
---|---|---|---|---|---|
平均值 Mean | 标准误差 Standard error (SE) | 平均值 Mean | 标准误差 Standard error (SE) | ||
碳 Carbon (mg·g-1) | 473.50a | 0.890 0 | 460.40b | 2.160 | |
氮 Nitrogen (mg·g-1) | 9.80a | 0.480 0 | 9.80a | 0.240 | |
磷 Phosphorus (mg·g-1) | 0.80a | 0.050 0 | 0.40b | 0.040 | |
钾 Potassium (mg·g-1) | 9.50a | 0.500 0 | 2.70b | 0.110 | |
钙 Calcium (mg·g-1) | 2.20a | 0.200 0 | 6.30b | 0.150 | |
镁 Magnesium (mg·g-1) | 0.70a | 0.040 0 | 1.10b | 0.030 | |
锰 Manganese (mg·g-1) | 0.02a | 0.001 0 | 0.10b | 0.003 | |
锌 Zinc (mg·g-1) | 0.01a | 0.000 9 | 0.02b | 0.001 | |
N:P | 12.60a | 0.300 0 | 23.70b | 2.290 | |
C:N | 48.60a | 2.560 0 | 47.10a | 1.280 |
表1 贝加尔针茅根系组织和地上部分凋落物的初始化学组成
Table 1 Initial chemical composition of root tissues and shoot litter of Stipa baicalensis
化学组成 Chemical composition | 地上部分凋落物 Shoot litter | 根系凋落物 Root litter | |||
---|---|---|---|---|---|
平均值 Mean | 标准误差 Standard error (SE) | 平均值 Mean | 标准误差 Standard error (SE) | ||
碳 Carbon (mg·g-1) | 473.50a | 0.890 0 | 460.40b | 2.160 | |
氮 Nitrogen (mg·g-1) | 9.80a | 0.480 0 | 9.80a | 0.240 | |
磷 Phosphorus (mg·g-1) | 0.80a | 0.050 0 | 0.40b | 0.040 | |
钾 Potassium (mg·g-1) | 9.50a | 0.500 0 | 2.70b | 0.110 | |
钙 Calcium (mg·g-1) | 2.20a | 0.200 0 | 6.30b | 0.150 | |
镁 Magnesium (mg·g-1) | 0.70a | 0.040 0 | 1.10b | 0.030 | |
锰 Manganese (mg·g-1) | 0.02a | 0.001 0 | 0.10b | 0.003 | |
锌 Zinc (mg·g-1) | 0.01a | 0.000 9 | 0.02b | 0.001 | |
N:P | 12.60a | 0.300 0 | 23.70b | 2.290 | |
C:N | 48.60a | 2.560 0 | 47.10a | 1.280 |
图1 在不同放置位置下贝加尔针茅根系组织和地上部分凋落物残余重量(%)的变化(平均值±标准误差)。SBL, 地上部分凋落物; SBR, 根系组织凋落物。N, 置于地表; Y, 置于 15 cm土壤表层。不同小写字母表示不同处理之间差异显著 (p < 0.05)。
Fig. 1 Litter mass loss (remaining mass percentage) changes of shoot litter and root tissues of Stipa baicalensis (mean ± SE). SBL, shoot litter; SBR, root litter. N, laid on the soil surface; Y, laid in the 15 cm soil layer. Different lowercase letters denote significant difference between treatments at 0.05 level.
图2 贝加尔针茅根系组织和地上部分凋落物分解过程中C、N含量以及C:N的变化(平均值±标准误差)。SBL, 地上部分凋落物; SBR, 根系组织凋落物。N, 置于地表; Y, 置于15 cm土壤表层。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 2 Changes of C, N content and C:N of root tissues and shoot litter for Stipa baicalensis (mean ± SE). SBL, shoot litter; SBR, root litter. N, laid on the soil surface; Y, laid in the 15 cm soil layer. Different lowercase letters denote significant difference between treatments at 0.05 level.
图3 凋落物分解期间, 土壤温度、土壤湿度和凋落物重量损失的变化。由于冬季凋落物分解较少, 图中未标出。
Fig. 3 Variations of soil temperature, soil moisture and litter mass loss during litter decomposition. The values are not shown because of litter decomposition less in winter.
图4 放置位置对贝加尔针茅根系组织和地上部分凋落物分解的影响(平均值±标准误差)。SBL, 地上部分凋落物; SBR, 根系组织凋落物。N, 置于地表; Y, 置于15 cm土壤表层。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 4 Effects of the litter placing position on root tissue and shoot litter decomposition for Stipa baicalensis (mean ± SE). SBL, shoot litter; SBR, root litter. N, laid on the soil surface; Y, laid in the 15 cm soil layer. Different lowercase letters denote significant difference between treatments at 0.05 level.
图5 贝加尔针茅地上部分凋落物和根系组织在不同放置位置下微生物生物量C、N含量变化(平均值±标准误差)。SBL, 地上部分凋落物; SBR, 根系组织凋落物。N, 置于地表; Y, 置于15 cm土壤表层。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 5 Changes of microbial biomass carbon and nitrogen contents of root tissue and shoot litter for Stipa baicalensis at different positions (mean ± SE). SBL, shoot litter; SBR, root litter. N, laid on the soil surface; Y, laid in the 15 cm soil layer. Different lowercase letters denote significant difference between treatments at 0.05 level.
MC | MN | MC:N | LN | LC | LC:N | Sn | Sa | |
---|---|---|---|---|---|---|---|---|
MC | 1 | |||||||
MN | 0.713** | 1 | ||||||
MC:N | 0.662** | -0.036 | 1 | |||||
LN | 0.133 | 0.118 | 0.061 | 1 | ||||
LC | 0.250 | 0.215 | 0.166 | 0.574** | 1 | |||
LC:N | -0.023 | -0.032 | 0.016 | -0.787** | 0.022 | 1 | ||
Sn | -0.275 | -0.114 | -0.276 | 0.168 | -0.021 | -0.204 | 1 | |
Sa | 0.528** | 0.317 | 0.491* | 0.346 | 0.517** | -0.079 | -0.389 | 1 |
表2 凋落物C、N含量与土壤微生物生物量C、N含量的相关关系(r)
Table 2 Correlation (r) between litter carbon and nitrogen content and microbial biomass carbon and nitrogen content
MC | MN | MC:N | LN | LC | LC:N | Sn | Sa | |
---|---|---|---|---|---|---|---|---|
MC | 1 | |||||||
MN | 0.713** | 1 | ||||||
MC:N | 0.662** | -0.036 | 1 | |||||
LN | 0.133 | 0.118 | 0.061 | 1 | ||||
LC | 0.250 | 0.215 | 0.166 | 0.574** | 1 | |||
LC:N | -0.023 | -0.032 | 0.016 | -0.787** | 0.022 | 1 | ||
Sn | -0.275 | -0.114 | -0.276 | 0.168 | -0.021 | -0.204 | 1 | |
Sa | 0.528** | 0.317 | 0.491* | 0.346 | 0.517** | -0.079 | -0.389 | 1 |
[1] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79,439-449. |
[2] | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133,13-22. |
[3] | Berg MP, Kniese JP, Zoomer R, Verhoef HA (1998). Long- term decomposition of successive organic strata in a nitrogen saturated Scots pine forest soil. Forest Ecology and Management, 107,159-172. |
[4] | Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010). Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant and Soil, 331,481-496. |
[5] | Chen FL (陈法霖), Jiang B (江波), Zhang K (张凯), Zheng H (郑华), Xiao Y (肖燚), Ouyang ZY (欧阳志云), Tu NM (屠乃美) (2011). Relationships between initial chemical composition of forest leaf litters and their decomposition rates in degraded red soil hilly region of Southern China. Chinese Journal of Applied Ecology (应用生态学报), 22,565-570. (in Chinese with English abstract) |
[6] | Cotrufo MF, Ineson P, Rowland AP (1994). Decomposition of tree leaf litters grown under elevated CO 2: effect of litter quality. Plant and Soil, 163,121-130. |
[7] | Doblas-Miranda E, Sánchez-Piñero F, González-Megías A (2009). Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats? Pedobiologia, 52,361-373. |
[8] |
Fierer N, Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103,626-631.
URL PMID |
[9] | Fujii S, Takeda H (2010). Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above- and belowground. Soil Biology and Biochemistry, 42,2224-2230. |
[10] | Fujimaki R, Takeda H, Wiwatiwitaya D (2008). Fine root decomposition in tropical dry evergreen and dry deciduous forests in Thailand. Journal of Forest Research, 13,338-346. |
[11] |
Godoy O, Castro-Díez P, van Logtestijin RSP, Cornelissen JHC, Valladares F (2010). Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia, 162,781-790.
DOI URL PMID |
[12] | Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS (2009). Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Global Change Biology, 15,1320-1338. |
[13] |
Hirschel G, Körner C, Arnone III JA (1997). Will rising atmospheric CO 2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia, 110,387-392.
DOI URL PMID |
[14] |
Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010). Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 162,505-513.
URL PMID |
[15] | Jenkinson DS, Powlson DS (1976). The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8,209-213. |
[16] | Kemp PR, Reynolds JF, Virginia RA, Whitford WG (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 53,21-39. |
[17] | Lehmann J, Schroth G, Zech W (1995). Decomposition and nutrient release from leaves, twigs and roots of three alley- cropped tree legumes in central Togo. Agroforestry Systems, 29,21-36. |
[18] | Li LZ (李林芝), Zhang DG (张德罡), Xin XP (辛晓平), Yan YC (闫玉春), Yang GX (杨桂霞), Li J (李瑾), Wang X (王旭) (2009). Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica (生态学报), 29,5271-5279. (in Chinese with English abstract) |
[19] | Li J (李瑾), Zhang DG (张德罡), Zhang HB (张宏斌), Li G (李刚), Yang GX (杨桂霞), Li LZ (李林芝), Xin XP (辛晓平) (2010). A study on the variations of pivotal photosynthetic active radiation parameters of a Leymus chinensis meadow-steppe in Hulunber. Acta Prataculturae Sinica (草业学报), 19,243-250. (in Chinese with English abstract). |
[20] | Li XF (李雪峰), Han SJ (韩士杰), Zhang Y (张岩) (2007). Indirect effects of precipitation on litter decomposition of Quercus mongolica. Chinese Journal of Applied Ecology (应用生态学报), 18,261-266. (in Chinese with English abstract) |
[21] | Li ZZ (李梓正), Zhu LB (朱立博), Lin YC (林叶春), Hu YG (胡跃高), Zeng ZH (曾昭海) (2010). Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir Grassland. Acta Ecologica Sinica (生态学报), 30,2883-2889. (in Chinese with English abstract) |
[22] | Lin CF, Yang YS, Guo JF, Chen GS, Xie JS (2011). Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant and Soil, 338,311-327. |
[23] | Liu ZF, Fu BJ, Zheng XX, Liu GH (2010). Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study. Soil Biology and Biochemistry, 42,445-450. |
[24] | Liu ZK (刘忠宽), Wang SP (汪诗平), Han JG (韩建国), Chen ZZ (陈佐忠) (2005). Decomposition and nutrients dynamics of plant litter and roots in Inner Mongolia steppe. Acta Prataculturae Sinica (草业学报), 14,24-30. (in Chinese with English abstract) |
[25] | Månsson K, Bengtson P, Falkengren-Grerup U, Bengtsson G (2009). Plant-microbial competition for nitrogen uncoupled from soil C:N ratios. Oikos, 118,1908-1916. |
[26] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44,322-331. |
[27] | Osono T, Takeda H (2004). Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research, 19,593-602. |
[28] | Ostertag R, Hobbie SE (1999). Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia, 121,564-573. |
[29] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315,361-364.
URL PMID |
[30] |
Powers JS, Montgomery RA, Adair EC, Brearley FQ, deWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, de Oliveira AA, Poorter L, Ramanamanjato JB, Salk C, Varela A, Weiblen GD, Lerdau MT (2009). Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97,801-811.
URL PMID |
[31] | Rouifed S, Handa IT, David JF, Hättenschwiler S (2010). The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter. Oecologia, 163,247-256. |
[32] | Rovira P, Rovira R (2010). Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma, 155,329-343. |
[33] |
Silver WL, Miya RK (2001). Global patterns in root decom- position: comparisons of climate and litter quality effects. Oecologia, 129,407-419.
DOI URL PMID |
[34] | Smith CK, Gholz HL,de Assis Oliveira F (1998). Fine litter chemistry, early-stage decay, and nitrogen dynamics under plantations and primary forest in Lowland Amazonia. Soil Biology and Biochemistry, 30,2159-2169. |
[35] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19,703-707. |
[36] |
Vivanco L, Austin AT (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150,97-107.
URL PMID |
[37] | Wang J (王瑾), Huang JH (黄建辉) (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica (植物生态学报), 25,375-380. (in Chinese with English abstract) |
[38] | Wang W (王娓), Guo JX (郭继勋) (2001). Seasonal dynamics of environmental factors and decomposition rate of litter in Puccinellia tenuiflora community of Songnen grassland of China. Chinese Journal of Applied Ecology (应用生态学报), 12,841-844. (in Chinese with English abstract) |
[39] | Withington CL, Sanford Jr RL (2007). Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology and Biochemistry, 39,68-75. |
[40] | Zheng XX (郑晓翾), Zhao JM (赵家明), Zhang YG (张玉刚), Wu YQ (吴雅琼), Jin TT (靳甜甜), Liu GH (刘国华) (2007). Variation of grassland biomass and its relation- ships with environmental factors in Hulunbeier, Inner Mongolia. Chinese Journal of Ecology (生态学杂志), 26,533-538. (in Chinese with English abstract) |
[1] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[2] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[5] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[6] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[7] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[8] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[9] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[10] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[11] | 王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普. 草地利用方式对土壤呼吸和凋落物分解的影响[J]. 植物生态学报, 2015, 39(3): 239-248. |
[12] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
[13] | 武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄. 季节性雪被对高山森林凋落物分解的影响[J]. 植物生态学报, 2013, 37(4): 296-305. |
[14] | 刘瑞龙, 杨万勤, 谭波, 王文君, 倪祥银, 吴福忠. 土壤动物对川西亚高山和高山森林凋落叶第一年不同分解时期N和P元素动态的影响[J]. 植物生态学报, 2013, 37(12): 1080-1090. |
[15] | 李荣华, 邓琦, 周国逸, 张德强. 起始时间对亚热带森林凋落物分解速率的影响[J]. 植物生态学报, 2011, 35(7): 699-706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19