植物生态学报 ›› 2013, Vol. 37 ›› Issue (9): 803-810.DOI: 10.3724/SP.J.1258.2013.00084
孙宝伟1,2, 杨晓东1,2, 张志浩, 马文济1,2, 黄海侠1,2, 阎恩荣1,2,*()
收稿日期:
2013-04-15
接受日期:
2013-07-19
出版日期:
2013-04-15
发布日期:
2013-09-02
通讯作者:
阎恩荣
作者简介:
*E-mail: eryan@des.ecnu.edu.cn基金资助:
SUN Bao-Wei1,2, YANG Xiao-Dong1,2, ZHANG Zhi-Hao, MA Wen-Ji1,2, Ali ARSHAD1,2, HUANG Hai-Xia1,2, YAN En-Rong1,2,*()
Received:
2013-04-15
Accepted:
2013-07-19
Online:
2013-04-15
Published:
2013-09-02
Contact:
YAN En-Rong
摘要:
土壤碳固持量随森林演替显著提高, 对减缓全球变暖具有重要意义; 但是, 演替过程中土壤有机碳库与植被碳归还的关系尚无定论。该研究以浙江天童常绿阔叶林次生演替系列为对象, 通过测定前中后3个演替阶段土壤总有机碳(TOC)、可矿化碳(MC)、可溶性有机碳(DOC)和微生物量碳(MBC) 3种活性有机碳的含量与储量, 植被凋落物年凋落量、地表枯落物现存量和细根年归还量及其碳储量, 利用相关分析和多元逐步回归拟合, 分析土壤碳库与植被碳输入的关系。结果表明: (1)土壤TOC、MC、DOC和MBC含量随演替进行均显著增加(p < 0.05); (2)随演替进行, 土壤TOC储量显著增加( p < 0.05), 而MC、DOC和MBC储量并没有出现一致的变化趋势, 其排序为: 中期>后期>前期; (3)凋落物年凋落量及其碳储量随演替显著增加( p < 0.05), 细根年归还量及其碳储量随演替先增后降( p < 0.05), 而地表枯落物现存量与碳储量显著降低; (4) 3种活性有机碳中, MC储量对土壤总有机碳储量解释的贡献率为34.01% ( R2 = 0.388, p < 0.05); (5) TOC和活性碳库(MC、DOC、MBC)受到不同碳归还方式的影响, 但细根的影响最大(分别为28.2%、50.0%、73.4%和68.8%)。总之, 随天童常绿阔叶林演替发生, 土壤总有机碳和3种活性有机碳储量显著增加, 细根生物量和可矿化碳库储量增加是引起土壤碳固持量增加的主要原因。
孙宝伟, 杨晓东, 张志浩, 马文济, 黄海侠, 阎恩荣. 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系. 植物生态学报, 2013, 37(9): 803-810. DOI: 10.3724/SP.J.1258.2013.00084
SUN Bao-Wei, YANG Xiao-Dong, ZHANG Zhi-Hao, MA Wen-Ji, Ali ARSHAD, HUANG Hai-Xia, YAN En-Rong. Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 2013, 37(9): 803-810. DOI: 10.3724/SP.J.1258.2013.00084
演替阶段 Success- ional stage | 植被类型 Vegetation type | 群落类型 Community type | 年龄 Age (a) | 海拔 Altitude (m) | 坡度 Slope (°) | 主要优势种 Dominant species | 高度 层数 Number of vertical layer | 高度 Top height (m) | 土壤 容重 Soil bulk density (g·cm-3) | 土壤 pH Soil pH | 土壤 总氮 Soil total N (kg·hm-2) | 土壤 总磷 Soil total P (kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 次生针叶林Secondary coniferous forest | 马尾松群落 Pinus massoniana community | 30 | 115 | 15 | 马尾松 Pinus massoniana 枫香 Liquidambar formosana | 2 | 12 | 1.34 | 4.18 | 5.98 | 0.39 |
II | 常绿阔叶幼年林 Young evergreen broad-leaved forest | 木荷群落 Schima superba community | 60 | 163 | 20 | 木荷 Schima superba 柯 Lithocarpus glaber | 3 | 20 | 1.30 | 4.18 | 25.07 | 1.04 |
III | 成熟常绿阔叶林 Mature evergreen broad-leaved forest | 栲群落 Castanopsis fargesiicommunity | 120 | 196 | 26 | 栲 Castanopsis fargesii 木荷 Schima superba | 3 | 25 | 1.07 | 3.81 | 40.62 | 2.12 |
表1 浙江天童常绿阔叶林次生演替不同阶段的样地特征
Table 1 Characteristics of selected plots in a secondary successional series of evergreen broad-leaved forests in Tiantong, Zhejiang Province
演替阶段 Success- ional stage | 植被类型 Vegetation type | 群落类型 Community type | 年龄 Age (a) | 海拔 Altitude (m) | 坡度 Slope (°) | 主要优势种 Dominant species | 高度 层数 Number of vertical layer | 高度 Top height (m) | 土壤 容重 Soil bulk density (g·cm-3) | 土壤 pH Soil pH | 土壤 总氮 Soil total N (kg·hm-2) | 土壤 总磷 Soil total P (kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 次生针叶林Secondary coniferous forest | 马尾松群落 Pinus massoniana community | 30 | 115 | 15 | 马尾松 Pinus massoniana 枫香 Liquidambar formosana | 2 | 12 | 1.34 | 4.18 | 5.98 | 0.39 |
II | 常绿阔叶幼年林 Young evergreen broad-leaved forest | 木荷群落 Schima superba community | 60 | 163 | 20 | 木荷 Schima superba 柯 Lithocarpus glaber | 3 | 20 | 1.30 | 4.18 | 25.07 | 1.04 |
III | 成熟常绿阔叶林 Mature evergreen broad-leaved forest | 栲群落 Castanopsis fargesiicommunity | 120 | 196 | 26 | 栲 Castanopsis fargesii 木荷 Schima superba | 3 | 25 | 1.07 | 3.81 | 40.62 | 2.12 |
演替阶段 Successional stage | 含量 Content | 储量 Stock | |||||||
---|---|---|---|---|---|---|---|---|---|
TOC (g·kg-1) | MC (g·kg-1) | DOC (mg·kg-1) | MBC (mg·kg-1) | TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | ||
I | 34.20 ± 1.63 a | 1.21 ± 0.04 a | 27.24 ± 0.14 a | 220.47 ± 5.28 a | 91.53 ± 3.49 a | 3.24 ± 0.13 a | 0.073 ± 8.55×10 -4a | 0.59 ± 0.019 a | |
II | 44.60 ± 2.74 b | 1.87 ± 0.06 b | 34.03 ± 0.53 b | 271.93 ± 6.87 b | 116.25 ± 7.53 b | 4.87 ± 0.16 b | 0.089 ± 9.10×10 -4c | 0.71 ± 0.020 b | |
III | 55.58 ± 3.54 c | 2.15 ± 0.19 b | 38.15 ± 0.64 c | 295.71 ± 8.36 c | 118.90 ± 6.73 b | 4.59 ± 0.36 b | 0.082 ± 2.04×10 -3b | 0.63 ± 0.026 a |
表2 浙江天童常绿阔叶林次生演替阶段不同土壤碳库的含量及储量(平均值±标准误差)
Table 2 Contents and stocks of different soil carbon pools among secondary successional stages in evergreen broad-leaved forests in Tiantong, Zhejiang (mean ± SE)
演替阶段 Successional stage | 含量 Content | 储量 Stock | |||||||
---|---|---|---|---|---|---|---|---|---|
TOC (g·kg-1) | MC (g·kg-1) | DOC (mg·kg-1) | MBC (mg·kg-1) | TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | ||
I | 34.20 ± 1.63 a | 1.21 ± 0.04 a | 27.24 ± 0.14 a | 220.47 ± 5.28 a | 91.53 ± 3.49 a | 3.24 ± 0.13 a | 0.073 ± 8.55×10 -4a | 0.59 ± 0.019 a | |
II | 44.60 ± 2.74 b | 1.87 ± 0.06 b | 34.03 ± 0.53 b | 271.93 ± 6.87 b | 116.25 ± 7.53 b | 4.87 ± 0.16 b | 0.089 ± 9.10×10 -4c | 0.71 ± 0.020 b | |
III | 55.58 ± 3.54 c | 2.15 ± 0.19 b | 38.15 ± 0.64 c | 295.71 ± 8.36 c | 118.90 ± 6.73 b | 4.59 ± 0.36 b | 0.082 ± 2.04×10 -3b | 0.63 ± 0.026 a |
图1 浙江天童常绿阔叶林演替过程中凋落物年凋落量、地表枯落物现存量和细根年归还量(A)及碳储量(B) (平均值±标准误差)。I、II、III同表1。同一组不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Annual amounts of litterfall, forest floor biomass and annual return mass of fine roots (A), as well as carbon stocks among litterfall, forest floor and fine roots (B) along a successional series in evergreen broad-leaved forest in Tiantong, Zhengjiang (mean ± SE). I, II, III, see Table 1. Different letters on the same column group indicate significant difference (p < 0.05).
TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | |
---|---|---|---|---|
TOC (t·hm-2) | 1.000 | |||
MC (t·hm-2) | 0.632* | 1.000 | ||
DOC (t·hm-2) | 0.528* | 0.701** | 1.000 | |
MBC (t·hm-2) | 0.439 | 0.442 | 0.865** | 1.000 |
表3 浙江天童常绿阔叶林不同演替阶段土壤不同类型碳储量间的Pearson相关系数
Table 3 Pearson correlation coefficients of carbon stocks among different soil carbon pools across successional stages in evergreen broad-leaved forests in Tiantong, Zhejiang
TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | |
---|---|---|---|---|
TOC (t·hm-2) | 1.000 | |||
MC (t·hm-2) | 0.632* | 1.000 | ||
DOC (t·hm-2) | 0.528* | 0.701** | 1.000 | |
MBC (t·hm-2) | 0.439 | 0.442 | 0.865** | 1.000 |
TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | |
---|---|---|---|---|
凋落物年凋落量 Annual amounts of litterfall (t·hm-2) | 0.632* | 0.609* | 0.445 | 0.213 |
地表枯落现存量 Forest floor biomass (t·hm-2) | -0.411 | -0.483 | -0.209 | 0.134 |
细根年归还量 Annual fine roots mass (t·hm-2) | 0.714** | 0.853** | 0.901** | 0.700* |
表4 浙江天童常绿阔叶林不同演替阶段土壤不同类型碳库与凋落物年凋落量、地表枯落物现存量及细根年归还量的Pearson相关系数
Table 4 Pearson correlation coefficients between different types of soil carbon and annual amounts of litterfall, forest floor biomass and annual fine roots mass across successional stages in evergreen broad-leaved forests in Tiantong, Zhejiang
TOC (t·hm-2) | MC (t·hm-2) | DOC (t·hm-2) | MBC (t·hm-2) | |
---|---|---|---|---|
凋落物年凋落量 Annual amounts of litterfall (t·hm-2) | 0.632* | 0.609* | 0.445 | 0.213 |
地表枯落现存量 Forest floor biomass (t·hm-2) | -0.411 | -0.483 | -0.209 | 0.134 |
细根年归还量 Annual fine roots mass (t·hm-2) | 0.714** | 0.853** | 0.901** | 0.700* |
Y | 方程 Equation | R2 | p value |
---|---|---|---|
TOC | Y = 65.844 + 39.009 X1 | 0.510 | 0.009 |
MC | Y = 1.640 + 2.351 X1 | 0.728 | <0.001 |
DOC | Y = 0.058 + 0.021 X1 | 0.812 | <0.001 |
MBC | Y = 0.485 + 0.145 X1 | 0.490 | 0.011 |
表5 浙江天童常绿阔叶林不同演替过程中不同类型碳库储量与凋落物年凋落量、地表枯落物现存量及细根年归还量的逐步回归结果
Table 5 Results of stepwise regression between carbon stocks in each of four soil pools and annual amounts of litterfall, forest floor biomass and annual fine roots mass across successional stages in evergreen broad-leaved forests in Tiantong, Zhejiang
Y | 方程 Equation | R2 | p value |
---|---|---|---|
TOC | Y = 65.844 + 39.009 X1 | 0.510 | 0.009 |
MC | Y = 1.640 + 2.351 X1 | 0.728 | <0.001 |
DOC | Y = 0.058 + 0.021 X1 | 0.812 | <0.001 |
MBC | Y = 0.485 + 0.145 X1 | 0.490 | 0.011 |
[1] | Ahn MY, Zimmerman AR, Comerford NB, Sickman JO, Grunwald S (2009). Carbon mineralization and labile organic carbon pools in the sandy soils of a North Florida watershed. Ecosystems, 12, 672-685. |
[2] |
Anderson TH, Domsch KH (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology & Biochemistry, 21, 471-479.
DOI URL |
[3] | Busse MD, Sanchez FG, Ratcliff AW, Butnor JR, Carter EA, Powers RF (2009). Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues. Soil Biology & Biochemistry, 41, 220-227. |
[4] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL PMID |
[5] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[6] |
Guo LB, Halliday MJ, Siakmotu SJM, Gifford RM (2005). Fine root production and litter input: its effects on soil carbon. Plant and Soil, 272, 1-10.
DOI URL |
[7] |
Haynes RJ (1999). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology & Biochemistry, 32, 211-219.
DOI URL |
[8] | Huang JY, Song CC, Zhang JB, Guo YD, Liao YJ (2008). Influence of litter importation on basal respiration and labile carbon in restored farmland in Sanjiang Plain. Acta Ecologica Sinica, 28, 3417-3424. (in Chinese with English abstract) |
[黄靖宇, 宋长春, 张金波, 郭跃东, 廖玉静 (2008). 凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响. 生态学报, 28, 3417-3424.] | |
[9] | Institute of Soil Science, Chinese Academy of Sciences (1978). Soil Physical and Chemical Analysis. Shanghai Scientific and Technical Publishers, Shanghai.132-136. (in Chinese) |
中国科学院南京土壤研究所 (1978). 土壤理化分析. 上海科学技术出版社, 上海.132-136.] | |
[10] |
Kalbitz K, Kaiser K (2008). Contribution of dissolved organic matter to carbon storage in forest mineral soils. Journal of Plant Nutrition and Soil Science, 171, 52-60.
DOI URL |
[11] |
Li YY, Shao MA (2006). Change of soil physical under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments, 64, 77-96.
DOI URL |
[12] | Lin QM, Wu YG, Liu HL (1999). Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology, 18(2),63-66. (in Chinese with English abstract) |
[林启美, 吴玉光, 刘焕龙 (1999). 熏蒸法测定土壤微生物量碳的改进. 生态学杂志, 18(2),63-66.] | |
[13] | Lü GH, Zhou GS, Zhou L, Jia QY (2006). Methods of soil dissolved organic carbon measurement and their applications. Journal of Meteorology and Environment, 22(2),51-55. (in Chinese with English abstract) |
[吕国红, 周广胜, 周莉, 贾庆宇 (2006). 土壤溶解性有机碳测定方法与应用. 气象与环境学报, 22(2),51-55.] | |
[14] |
McClaugherty CA, Aber JD, Melillo JM (1982). The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 63, 1481-1490.
DOI URL |
[15] |
Núñez S, Martínez-Yrízar A, Búrquez A, García-Oliva F (2001). Carbon mineralization in the southern Sonoran desert. Acta Oecologica, 22, 269-276.
DOI URL |
[16] |
Raich JW, Nadelhoffer KJ (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70, 1346-1354.
DOI URL |
[17] |
Sauer TJ, Cambardella CA, Brandle JR (2007). Soil carbon and tree litter dynamics in a red cedar-scotch pine shelterbelt. Agroforestry Systems, 71, 163-174.
DOI URL |
[18] | Shi JY (2005). Fine Root Turnover and Nutrient Dynamics in the Secondary Succession of Evergreen Broad-Leaved Forest in Tiantong. Master degree dissertation, East China Normal University, Shanghai. (in Chinese with English abstract) |
施家月 (2005). 天童常绿阔叶林次生演替过程中细根的周转和养分动态. 硕士学位论文, 华东师范大学, 上海.] | |
[19] | Song YC, Wang XR (1995). Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province, China. Shanghai Scientific and Technological Literature Publishing House, Shanghai.11-12. (in Chinese) |
[宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海.11-12.] | |
[20] |
Uselman SM, Qualls RG, Lilienfein J (2007). Contribution of roots vs. leaf litter to dissolved organic carbon leaching through soil. Soil Science Society of America Journal, 71, 1555-1563.
DOI URL |
[21] |
Vance ED, Brookes PC, Jenkinson DC (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707.
DOI URL |
[22] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-337. |
[23] | Wang QK (2011). Responses of forest soil carbon pool and carbon cycles to the changes of carbon input. Chinese Journal of Applied Ecology, 22, 1075-1081. (in Chinese with English abstract) |
[王清奎 (2011). 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 22, 1075-1081.] | |
[24] | Wang QK, Wang SL, Yu XJ, Zhang J, Liu YX (2007). Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broadleaved forest and Chinese fir plantation. Chinese Journal of Ecology, 26, 1918-1923. (in Chinese with English abstract) |
[王清奎, 汪思龙, 于小军, 张剑, 刘燕新 (2007). 常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响. 生态学杂志, 26, 1918-1923.] | |
[25] |
Xu XN, Hirata E (2002). Forest floor mass and litterfall in Pinus luchuensis plantations with and without broad-leaved trees. Forest Ecology and Management, 157, 165-173.
DOI URL |
[26] |
Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C: N: P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chinese Journal of Plant Ecology, 34, 48-57. (in Chinese with English abstract)
DOI URL |
[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
DOI URL |
|
[27] |
Yan ER, Wang XH, Zhou W (2008). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Chinese Journal of Plant Ecology, 32, 1-12. (in Chinese with English abstract)
DOI URL |
[阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林不同退化群落的凋落物特征及其与土壤养分动态的关系. 植物生态学报, 32, 1-12.]
DOI URL |
|
[28] | Yang YS, Guo JF, Lin P, He ZM, Xie JS, Chen GS (2004). Carbon and nutrient pools of forest floor in native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica, 24, 359-367. (in Chinese with English abstract) |
[杨玉盛, 郭剑芬, 林鹏, 何宗明, 谢锦升, 陈光水 (2004). 格氏栲天然林与人工林枯枝落叶层碳库及养分库. 生态学报, 24, 359-367.] | |
[29] | Zhang QF, Song YC, Wu HQ, You WH (1999). Dynamics of litter amount and it’s decomposition in different successional stages of evergreen broad-leaved forest in Tiantong, Zhejiang Province. Acta Phytoecologica Sinica, 23, 250-255. (in Chinese with English abstract) |
[张庆费, 宋永昌, 吴化前, 由文辉 (1999). 浙江天童常绿阔叶林演替过程凋落物数量及分解动态. 植物生态学报, 23, 250-255.] | |
[30] | Zhang QF, You WH, Song YC (1997). Influence of plant community succession on soil physical properties in Tiantong Forest Park, Zhejiang Province. Journal of Plant Resources and Environment, 6(2),36-40. (in Chinese with English abstract) |
[张庆费, 由文辉, 宋永昌 (1997). 浙江天童森林公园植物群落演替对土壤物理性质的影响. 植物资源与环境, 6(2),36-40.] | |
[31] | Zhang XQ (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research, 14, 566-573. (in Chinese with English abstract) |
[张小全 (2001). 环境因子对树木细根生物量、生产与周转的影响. 林业科学研究, 14, 566-573.] | |
[32] | Zhou W, Guo M, Zhong Q, Wang XH, Yan ER (2009). Characteristics of soil profile and organic carbon density among succession stages in the evergreen broad-leaved forests of Tiantong region, Zhejiang Province. Journal of East China Normal University (Natural Science), (2),11-20. (in Chinese with English abstract) |
[周武, 郭明, 仲强, 王希华, 阎恩荣 (2009). 天童常绿阔叶林主要演替阶段的土壤剖面及碳密度特征. 华东师范大学学报(自然科学版), (2),11-20.] | |
[33] | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract) |
[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳储量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[5] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[6] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[7] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[8] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[14] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[15] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19