植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 959-969.DOI: 10.3724/SP.J.1258.2014.00090
所属专题: 生物多样性
彭东海1,*(),杨建波1,李健1,邢永秀1,2,覃刘东1,杨丽涛1,2,**(
),李杨瑞1,2,**(
)
收稿日期:
2014-01-07
接受日期:
2014-04-14
出版日期:
2014-01-07
发布日期:
2014-09-22
通讯作者:
彭东海,杨丽涛,李杨瑞
基金资助:
PENG Dong-Hai1,*(),YANG Jian-Bo1,LI Jian1,XING Yong-Xiu1,2,QIN Liu-Dong1,YANG Li-Tao1,2,**(
),LI Yang-Rui1,2,**(
)
Received:
2014-01-07
Accepted:
2014-04-14
Online:
2014-01-07
Published:
2014-09-22
Contact:
PENG Dong-Hai,YANG Li-Tao,LI Yang-Rui
摘要:
为探讨间作大豆(Glycine max)对甘蔗(Saccharum officinarum)根际土壤细菌及固氮细菌多样性的影响, 收集和开发固氮菌资源, 筛选高效甘蔗联合固氮体系, 选用3个甘蔗栽培品种‘ROC22’、‘GT21’、‘B8’与大豆品种‘Guizao 2’进行间种栽培, 采用巢式PCR特异扩增细菌16S rRNA基因片段和固氮细菌nifH基因片段, 并结合变性梯度凝胶电泳(DGGE)技术, 对间作大豆的甘蔗根际土壤细菌及固氮细菌进行系统演化和多样性分析。聚类分析结果显示, 间作大豆改变了甘蔗根际土壤细菌及固氮细菌原来的群落组成结构, 尤其对固氮菌群落组成的改变更大, 但对群落物种的优势度影响较小。Shannon-Wiener多样性指数和Simpson多样性指数分析结果表明, 甘蔗-大豆间作显著影响甘蔗根际土壤中细菌和固氮菌的多样性, 其中对固氮细菌多样性的影响较大。不同甘蔗品种的根际土壤细菌和固氮菌在间作大豆条件下表现出不同的多样性, ‘ROC22’和‘GT21’间作处理甘蔗根际土壤固氮细菌的Shannon-Wiener多样性指数显著高于单作处理, 而‘ROC22’与大豆间作处理的甘蔗根际土壤固氮菌多样性最为丰富。在大豆生长盛期, 间作处理的甘蔗根际土壤细菌多样性最为丰富, 不同处理间的差异也最大, 随后下降。总体来看, 甘蔗-大豆间作显著地影响根际土壤细菌和固氮菌的群落结构和群落多样性, 有助于对甘蔗合理间作栽培模式的认识和筛选高效甘蔗联合固氮体系。
彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响. 植物生态学报, 2014, 38(9): 959-969. DOI: 10.3724/SP.J.1258.2014.00090
PENG Dong-Hai,YANG Jian-Bo,LI Jian,XING Yong-Xiu,QIN Liu-Dong,YANG Li-Tao,LI Yang-Rui. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane. Chinese Journal of Plant Ecology, 2014, 38(9): 959-969. DOI: 10.3724/SP.J.1258.2014.00090
图1 土壤总DNA提取。1, 空白对照, 时期1; 2, 大豆根际土, 时期1; 3, 空白对照, 时期2; 4, 大豆根际土, 时期2; 5, ‘B8’根际土, 单作, 时期1; 6, ‘B8’根际土, 间作, 时期1; 7, ‘B8’根际土, 单作, 时期2; 8, ‘B8’根际土, 间作, 时期2; 9, ‘B8’根际土, 单作, 时期3; 10, ‘B8’根际土, 间作, 时期3; 11, ‘ROC22’根际土, 单作, 时期1; 12, ‘ROC22’根际土, 间作, 时期1; 13, ‘ROC22’根际土, 单作, 时期2; 14, ‘ROC22’根际土, 间作, 时期2; 15, ‘ROC22’根际土, 单作, 时期3; 16, ‘ROC22’根际土, 间作, 时期3; 17, ‘GT21’根际土, 单作, 时期1; 18, ‘GT21’根际土, 间作, 时期1; 19, ‘GT21’根际土, 单作, 时期2; 20, ‘GT21’根际土, 间作, 时期2; 21, ‘GT21’根际土, 单作, 时期3; 22, ‘GT21’根际土, 间作, 时期3。M, 标准分子量DNA (Mark II, 北京天根)。时期1, 大豆生长盛期(5月22日); 时期2, 大豆成熟期(7月2日); 时期3, 甘蔗伸长期(9月15日)。
Fig. 1 Extraction of total soil DNA. 1, control, stage 1; 2, rhizospheric soil of soybean, stage 1; 3, control, stage 2; 4, rhizospheric soil of soybean, stage 2; 5, rhizospheric soil of ‘B8’, monoculture, stage 1; 6, rhizospheric soil of ‘B8’, intercropping, stage 1; 7, rhizospheric soil of ‘B8’, monoculture, stage 2; 8, rhizospheric soil of ‘B8’, intercropping, stage 2; 9, rhizospheric soil of ‘B8’, monoculture, stage 3; 10, rhizospheric soil of ‘B8’, intercropping, stage 3; 11, rhizospheric soil of ‘ROC22’, monoculture, stage 1; 12, rhizospheric soil of ‘ROC22’, intercropping, stage 1; 13, rhizospheric soil of ‘ROC22’, monoculture, stage 2; 14, rhizospheric soil of ‘ROC22’, intercropping, stage 2; 15, rhizospheric soil of ‘ROC22’, monoculture, stage 3; 16, rhizospheric soil of ‘ROC22’, intercropping, stage 3; 17, rhizospheric soil of ‘GT21’, monoculture, stage 1; 18, rhizospheric soil of ‘GT21’, intercropping, stage 1; 19, rhizospheric soil of ‘GT21’, monoculture, stage 2; 20, rhizospheric soil of ‘GT21’, intercropping, stage 2; 21, rhizospheric soil of ‘GT21’, monoculture, stage 3; 22, rhizospheric soil of ‘GT21’, intercropping, stage 3. M, DNA mark (Mark II, Tiangen). stage 1, the highest at soybean booming stage (22 May); stage 2, soybean maturity (2 July); stage 3, sugarcane elongation stage (15 Sept.).
图3 nifH基因的第2轮PCR扩增产物。图注同图1。+、-分别为正负对照。
Fig. 3 The products of nifH gene in second round of PCR amplification. Notes are the same as in Fig. 1. “+” and “-” are positive and negative controls, respectively.
图4 不同土壤样品中细菌16S rRNA基因的变性梯度凝胶电泳(DGGE)图谱。1-22同图1。
Fig. 4 Denaturing gradient gel electrophoresis (DGGE) bands of bacterial 16S rRNA gene in different soil samples. 1-22 are the same as in Fig. 1.
图5 不同土壤样品中细菌16S rRNA基因变性梯度凝胶电泳(DGGE)图谱的聚类分析。1-22同图1。
Fig. 5 Cluster analysis on denaturing gradient gel electrophoresis (DGGE) bands of bacterial 16S rRNA gene in different soil samples. 1-22 are the same as in Fig. 1.
图6 不同土壤样品中细菌群落的多样性(平均值±标准误差)。不同字母表示不同处理间在p < 0.05水平上差异显著。
Fig. 6 Diversity of bacterial communities in different soil samples (mean ± SE). Different letters represent signi?cant differences among treatmens (p < 0.05).
图7 不同土壤样品中固氮细菌nifH基因的变性梯度凝胶电泳图谱。1-22同图1。
Fig. 7 Denaturing gradient gel electrophoresis bands of nitrogen-fixing bacterial nifH gene in different soil samples. 1-22 are the same as in Fig. 1.
图8 不同土壤样品中固氮菌nifH基因变性梯度凝胶电泳图谱的聚类分析。1-22同图1。
Fig. 8 Cluster analysis on denaturing gradient gel electrophoresis bands of nitrogen-fixing bacterial nifH gene in different soil samples. 1-22 are the same as in Fig. 1.
图9 不同土壤样品中固氮菌群落的多样性(平均值±标准误差)。不同字母表示不同处理间在p < 0.05水平上差异显著。
Fig. 9 Diversity of nitrogen-fixing bacteria in different soil samples (mean ± SE). Different letters represent signi?cant differences among treatments (p < 0.05).
[1] | Baudoin E, Benizri E, Guckert A (2003). Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology & Biochemistry, 35, 1183-1192. |
[2] | Bokhtiar SM, Hossain MS, Mahmud K, Paul GC (2003). Site specific nutrient management for sugarcane potato and sugarcane-onion intercropping systems. Asian Journal of Plant Sciences, 2, 1205-1208. |
[3] | Clemensson-Lindell A, Persson H (1992). Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods. Plant and Soil, 139, 39-45. |
[4] | Deng X, Liu HY, Tan JC, Chen HL, Sun SH (2006). Comparison on community composition and activity of edaphon in organic tea garden of different planting-life. Journal of Hunan Agricultural University (Natural Sciences), 32, 54-56. (in Chinese with English abstract) |
[ 邓欣, 刘红艳, 谭济才, 陈辉玲, 孙少华 (2006). 不同种植年限有机茶园土壤微生物群落组成及活性比较. 湖南农业大学学报(自然科学版), 32, 54-56.] | |
[5] |
Ferris MJ, Muyzer G, Ward DM (1996). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology, 62, 340-346.
DOI URL PMID |
[6] | Jayabal V, Sankaran N, Chockalingam S (1990). Effect of intercrops and nitrogen levels on the quality of sugarcane. Indian Sugar, 40, 113-115. |
[7] | Jiang CL, Xu LH (1997). Microorganism diversity and its conservation. Biodiversity Science, 5, 276-280. (in Chinese with English abstract) |
[ 姜成林, 徐丽华 (1997). 微生物多样性及其保育. 生物多样性, 5, 276-280.] | |
[8] | Kamruzzaman M, Hasanuzzama M (2007). Factors affecting profitability of sugarcane production as monoculture and as intercrop in selected areas of Bangladesh. Agricultural Research, 32, 433-444. |
[9] | Kanwar RS, Sharma KK, Kapur ML (1992). Sugarcane Intercropping Systems in Indian. Sugarcane Research Station, Jalandhar, Indian. 15-18. |
[10] | Lei JL (2006). Microbial Molecular Ecology on Vegetable Soils Ecosystem. PhD dissertation, Agriculture and Biotechnology College of Zhejiang University, Hangzhou. 33-34. (in Chinese with English abstract) |
[ 雷娟利 (2006). 蔬菜土壤生态系统微生物分子生态学研究. 博士学位论文, 浙江大学农业与生物技术学院, 杭州. 33-34.] | |
[11] | Li Q, Tan ZJ, Li JG, Tu NM, Xiao QM (2005). Effects of no tillage or minimum tillage or trend of microbial flora and its activity in paddy soil. Journal of Hunan Agricultural University (Natural Sciences), 31, 415-417. (in Chinese with English abstract) |
[ 李倩, 谭周进, 李建国, 屠乃美, 肖启明 (2005). 少免耕栽培晚稻对土壤微生物区系及活度的动态影响. 湖南农业大学学报(自然科学版), 31, 415-417.] | |
[12] | Li XP, Li M, Nian H, Mu YH (2012). Effect of sugarcane/soybean intercropping on growth, yield and quality of sugarcane and soybean. Journal of Northeast Agricultural University, 43(7), 42-46. (in Chinese) |
[ 李秀平, 李穆, 年海, 牟英辉 (2012). 甘蔗/大豆间作对甘蔗和大豆产量与品质的影响. 东北农业大学学报, 43(7), 42-46.] | |
[13] | Li XP, Mu YH, Cheng YB, Liu XG, Nian H (2013). Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum, 35, 1113-1119. |
[14] | Li YR (2010). Modern Sugarcane Science. China Agriculture Press, Beijing. (in Chinese) |
[ 李杨瑞 (2010). 现代甘蔗学. 中国农业出版学, 北京] | |
[15] | Li ZZ, Zhu LB, Lin YC, Hu YG, Zeng SH (2010). Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland. Acta Ecologica Sinica, 30, 2883-2889. (in Chinese with English abstract) |
[ 李梓正, 朱立博, 林叶春, 胡跃高, 曾昭海 (2010). 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 30, 2883-2889.] | |
[16] | Luo Q, Song YN, Zheng WW (2008). Determination of microorganism diversity in the paddy fields of Fujian Province by PCR-DGGE method. Chinese Journal of Eco-Agriculture, 16, 669-674. (in Chinese with English abstract) |
[ 罗青, 宋亚娜, 郑伟文 (2008). PCR-DGGE法研究福建省稻田土壤微生物地区多态性. 中国生态农业学报, 16, 669-674.] | |
[17] | Magurran AE (1988). Ecological Diversity and Its Measurement. Princeton University Press, Princeton. |
[18] | . Shannon CE (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. |
[19] | Simpson EH (1949). Measurement of diversity. Nature, 163, 688. |
[20] | Song YN, Li L, Bao XG, Zhang FS, Zheng WW (2006). A study of rhizosphere ammonia-oxidizer and N2-fixer community composition in different cropping systems by DGGE. Acta Agriculturae Universitis Jiangxiensis, 28, 506-511. (in Chinese with English abstract) |
[ 宋亚娜, 李隆, 包兴国, 张福锁, 郑伟文 (2006). 应用DGGE技术研究间、轮作对根际氨氧化细菌和固氮菌群落结构的影响. 江西农业大学学报, 28, 506-511.] | |
[21] | Suman A, Lal M, Singh AK, Gaur A (2006). Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agronomy Journal, 98, 698-704. |
[22] |
Wu FZ, Wang S, Yang Y (2008). Effects of rotation and intercropping on bacterial communities in rhizosphere soil of cucumber. Chinese Journal of Applied Ecology, 19, 2717-2722. (in Chinese with English abstract)
URL PMID |
[ 吴凤芝, 王澍, 杨阳 (2008). 轮套作对黄瓜根际土壤细菌种群的影响. 应用生态学报, 19, 2717-2722.]
URL PMID |
|
[23] | Wu JM, Li YR, Yang LT, Fang FX, Zhu QZ, Xie JL, Liu XY (2005). Sugarcane intercropping with soybean. Crops, (5), 103-105. (in Chinese with English abstract) |
[ 吴建明, 李杨瑞, 杨丽涛, 方锋学, 朱秋珍, 谢金兰, 刘晓燕 (2005). 甘蔗间种大豆的试验. 作物杂志, (5), 103-105.] | |
[24] | Yan J, Han XZ, Wang SQ, Li XH, Zhu WW (2010). Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field. Plant Nutrition and Fertilizer Science, 16, 341-347. (in Chinese with English abstract) |
[ 严君, 韩晓增, 王树起, 李晓慧, 朱巍巍 (2010). 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响. 植物营养与肥料学报, 16, 341-347.] | |
[25] |
Zani S, Mellon MT, Collier J, Zehr JP (2000). Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Applied and Environmental Microbiology, 66, 3119-3124.
DOI URL PMID |
[26] |
Zehr JP, Mcreynolds LA (1989). Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology, 55, 2522-2526.
DOI URL PMID |
[27] | Zheng C, Tan ZW, Liu YL (2004). Effects of crop rotation system (pineapples-sugarcane) on sugarcane growth and soil microflora. Chinese Journal of Tropical Crops, 25(3), 29-32. (in Chinese with English abstract) |
[ 郑超, 谭中文, 刘月廉 (2004). 菠萝-甘蔗轮作制度对甘蔗生长和土壤微生物区系的影响. 热带作物学报, 25(3), 29-32.] | |
[28] |
Zhou L, Yang Y, Wang ZH, Chen F, Zeng SH (2013). Influence of maize-soybean rotation and N fertilizer on bacterial community composition. Acta Agronomica Sinica, 39, 2016-2022. (in Chinese with English abstract)
DOI URL |
[ 周岚, 杨永, 王占海, 陈阜, 曾昭海 (2013). 玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响. 作物学报, 39, 2016-2022.]
DOI URL |
[1] | 陈林康, 赵平, 王顶, 向蕊, 龙光强. 玉米马铃薯秸秆混合腐解的非加性效应[J]. 植物生态学报, 2023, 47(12): 1728-1738. |
[2] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[3] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[4] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[5] | 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406. |
[6] | 郭数进,李玮瑜,马艳芸,赵恒,乔玲,李贵全. 山西不同生态型大豆品种苗期耐低温性综合评价[J]. 植物生态学报, 2014, 38(9): 990-1000. |
[7] | 王爱丽. 应用磷脂脂肪酸和聚合酶链式反应-变性梯度凝胶电泳分析技术研究湿地植物根际微生物群落多样性[J]. 植物生态学报, 2013, 37(8): 750-757. |
[8] | 焦念元,杨萌珂,宁堂原,尹飞,徐国伟,付国占,李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017. |
[9] | 王芳妹, 蔡妙珍, 张淑娜, 王宁, 李华飞, 胡雪娜, 虞舒航. NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的 作用[J]. 植物生态学报, 2011, 35(9): 981-989. |
[10] | 蔡妙珍, 邢承华, 刘鹏, 徐根娣, 吴韶辉, 何璠. 大豆根尖边缘细胞和粘液分泌对铝胁迫解除的响应[J]. 植物生态学报, 2008, 32(5): 1007-1014. |
[11] | 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响[J]. 植物生态学报, 2008, 32(4): 914-921. |
[12] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[13] | 苗保河, 李向东, 刘波, 何启平, 朱陶, 刘兴坦, 朱启玉, 乔广法, 樊廷安, 陈成君, 董庆裕, 余松烈. 波浪冠层栽培模式对高油大豆叶片活性氧代谢和膜脂过氧化的影响[J]. 植物生态学报, 2008, 32(3): 673-680. |
[14] | 李荣峰, 蔡妙珍, 刘鹏, 徐根娣, 陈敏燕, 梁和. Al3+对大豆根边缘细胞程序性死亡诱导的生理生态作用[J]. 植物生态学报, 2008, 32(3): 690-697. |
[15] | 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献[J]. 植物生态学报, 2008, 32(2): 477-484. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2920
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La