植物生态学报 ›› 2016, Vol. 40 ›› Issue (6): 574-584.DOI: 10.17521/cjpe.2015.0467
收稿日期:
2015-12-21
接受日期:
2016-05-09
出版日期:
2016-06-10
发布日期:
2016-06-15
通讯作者:
金光泽
基金资助:
Ming ZHOU1,2, Zhi-Li LIU1, Guang-Ze JIN1,*()
Received:
2015-12-21
Accepted:
2016-05-09
Online:
2016-06-10
Published:
2016-06-15
Contact:
Guang-Ze JIN
摘要:
木质部和集聚效应是影响间接法测定叶面积指数(LAI)精度的主要因素, 尤其是木质部的校正一直存在争议。针对这一问题, 该研究首先利用半球摄影法(DHP)和LAI-2000植物冠层分析仪法(LAI-2000法) 2种间接法测定了小兴安岭兴安落叶松(Larix gmelinii)人工林叶面积最大时期的有效LAI (Le), 然后提出了A、B、C 3种校正方案来提高间接法的测定精度。同时, 利用凋落物法和异速生长方程法2种直接法测定LAI, 以凋落物法测定值为标准来评估3种校正方案的校正效果, 并检验天顶角范围对校正结果是否存在显著影响。结果表明: 在0-45° (1-3环)、0-60° (1-4环)、45°-60° (4环)及0-75° (1-5环) 4种不同天顶角范围内, DHP测定的Le比凋落物法、异速生长方程法测定值分别低估19%-32%和8%-29%; 而LAI-2000法也得到相似的结论, 分别低估9%-30%和8%-28%。虽然校正方案A高估了木质部对LAI的贡献, 但在45º-60º天顶角范围内, 能有效地校正DHP测定的Le, 在1-3环和1-4环天顶角范围内, 能有效地校正LAI-2000法测定的Le。4种天顶角范围内, 校正方案B均能有效地校正DHP测定的Le。整体来看, 4种天顶角范围内, 校正方案C对DHP和LAI-2000法测定值的校正效果均优于其他2种方案。研究结果表明除木质部和集聚效应外, 天顶角范围的选择也是决定间接法测定LAI精度的重要因素。
周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度. 植物生态学报, 2016, 40(6): 574-584. DOI: 10.17521/cjpe.2015.0467
Ming ZHOU, Zhi-Li LIU, Guang-Ze JIN. Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation. Chinese Journal of Plant Ecology, 2016, 40(6): 574-584. DOI: 10.17521/cjpe.2015.0467
主要树种 Dominant species | 密度 Stem density (individuals·hm-2) | 平均胸径 Mean DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 相对优势度 Relative dominance (%) | 比叶面积1) SLA1) (cm2·g-1) | 叶生物量方程2) Allometric equations for leaf biomass2) Bleaf = aDBHb | |
---|---|---|---|---|---|---|---|
a | b | ||||||
兴安落叶松 Larix gmelinii | 350 | 28.93 | 24.29 | 84.49 | 134.23 | 0.014 | 3.934 |
水曲柳 Fraxinus mandshurica | 156 | 9.50 | 2.15 | 7.47 | 338.36 | 8.570 | 2.180 |
色木槭 Acer mono | 294 | 5.81 | 1.01 | 3.50 | 305.04 | 17.179 | 1.948 |
紫椴 Tilia amurensis | 239 | 5.62 | 0.72 | 2.50 | 243.59 | 1.694 | 2.507 |
其他 Others | 261 | 4.92 | 0.59 | 2.05 | - | - | - |
总计 Total | 1 300 | 13.25 | 28.75 | 100.00 | - | - | - |
表1 兴安落叶松人工林的物种组成及主要树种的比叶面积和叶生物量方程
Table 1 Composition of major species, allometric equations and specific leaf area for major species in the Larix gmelinii plantation
主要树种 Dominant species | 密度 Stem density (individuals·hm-2) | 平均胸径 Mean DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 相对优势度 Relative dominance (%) | 比叶面积1) SLA1) (cm2·g-1) | 叶生物量方程2) Allometric equations for leaf biomass2) Bleaf = aDBHb | |
---|---|---|---|---|---|---|---|
a | b | ||||||
兴安落叶松 Larix gmelinii | 350 | 28.93 | 24.29 | 84.49 | 134.23 | 0.014 | 3.934 |
水曲柳 Fraxinus mandshurica | 156 | 9.50 | 2.15 | 7.47 | 338.36 | 8.570 | 2.180 |
色木槭 Acer mono | 294 | 5.81 | 1.01 | 3.50 | 305.04 | 17.179 | 1.948 |
紫椴 Tilia amurensis | 239 | 5.62 | 0.72 | 2.50 | 243.59 | 1.694 | 2.507 |
其他 Others | 261 | 4.92 | 0.59 | 2.05 | - | - | - |
总计 Total | 1 300 | 13.25 | 28.75 | 100.00 | - | - | - |
图1 兴安落叶松人工林凋落物收集器内凋落叶总干质量的动态变化(平均值±标准误差)。
Fig. 1 Seasonal changes of total leaf litter dry mass in litter traps in the Larix gmelinii plantation (mean ± SE).
校正方案 Correction scheme | 校正公式 Correction equation | 木质部 Woody materials | 冠层水平上的集聚效应 Clumping effects beyond shoots | 簇内水平上的集聚效应 Clumping effects within shoots | 生态学特性 Ecological characteristics |
---|---|---|---|---|---|
校正方案A Correction scheme A | LAI = LeγE /ΩE - WAI | WAI, 通过光学仪器法在无叶期测定 WAI, which was measured by optical methods in leafless periods | ΩE, ΩE, which was obtained through DHP-TRAC software based on CC method developed by | γE, 测定兴安落叶松的γE, 然后根据小样方内兴安落叶松和其他阔叶树种的胸高断面积进行加权, 得到各样点林分水平上 的γE值 γE, γE for Larix gmelinii was first measured, and the γE for the stand was obtained by weighting γE for Larix gmelinii and other broadleaf species based on the basal area | 未考虑木质部对LAI贡献率的季节变异, 且过度校正了木质部的集聚效应 Ignoring seasonal variations of the contribution of woody materials to LAI, and overestimated the clumping effects of woody materials |
校正方案B Correction scheme B | LAI = LeγE /ΩE - SAI | SAI, 利用WAI乘以SAI占WAI的比例获得, 比例值为0.2 ( SAI, which was calculated by multiplying WAI by the ratio of SAI to WAI. The ratio was 0.2 ( | 同校正方案A Same as correction scheme A | 同校正方案A Same as correction scheme A | 一定程度上校正了木质部对LAI贡献率的季节变异, 过度校正了木质部的集聚效应 Slightly correcting seasonal variations of the contribution of woody materials to LAI, but also overestimated the clumping effects of woody materials |
校正方案C Correction scheme C | | αstem, 用SAI除以Le 获得 αstem, which was calculated by SAI divided by Le | 同校正方案A Same as correction scheme A | 同校正方案A Same as correction scheme A | 合理校正了木质部对LAI的贡献率, 避免过度校正木质部的集聚效应 Reasonably correcting seasonal variations of the contribution of woody materials to LAI, and avoid over estimating the clump- ing effects of woody materials |
表2 兴安落叶松人工林内3种校正方案中木质部和集聚效应(冠层水平上的集聚效应和簇内集聚效应)的校正参数及其生态学特性
Table 2 Correction parameters and its ecological characteristics for woody materials and clumping effects (clumping effects both beyond and within shoots) in three correction schemes in the Larix gmelinii plantation
校正方案 Correction scheme | 校正公式 Correction equation | 木质部 Woody materials | 冠层水平上的集聚效应 Clumping effects beyond shoots | 簇内水平上的集聚效应 Clumping effects within shoots | 生态学特性 Ecological characteristics |
---|---|---|---|---|---|
校正方案A Correction scheme A | LAI = LeγE /ΩE - WAI | WAI, 通过光学仪器法在无叶期测定 WAI, which was measured by optical methods in leafless periods | ΩE, ΩE, which was obtained through DHP-TRAC software based on CC method developed by | γE, 测定兴安落叶松的γE, 然后根据小样方内兴安落叶松和其他阔叶树种的胸高断面积进行加权, 得到各样点林分水平上 的γE值 γE, γE for Larix gmelinii was first measured, and the γE for the stand was obtained by weighting γE for Larix gmelinii and other broadleaf species based on the basal area | 未考虑木质部对LAI贡献率的季节变异, 且过度校正了木质部的集聚效应 Ignoring seasonal variations of the contribution of woody materials to LAI, and overestimated the clumping effects of woody materials |
校正方案B Correction scheme B | LAI = LeγE /ΩE - SAI | SAI, 利用WAI乘以SAI占WAI的比例获得, 比例值为0.2 ( SAI, which was calculated by multiplying WAI by the ratio of SAI to WAI. The ratio was 0.2 ( | 同校正方案A Same as correction scheme A | 同校正方案A Same as correction scheme A | 一定程度上校正了木质部对LAI贡献率的季节变异, 过度校正了木质部的集聚效应 Slightly correcting seasonal variations of the contribution of woody materials to LAI, but also overestimated the clumping effects of woody materials |
校正方案C Correction scheme C | | αstem, 用SAI除以Le 获得 αstem, which was calculated by SAI divided by Le | 同校正方案A Same as correction scheme A | 同校正方案A Same as correction scheme A | 合理校正了木质部对LAI的贡献率, 避免过度校正木质部的集聚效应 Reasonably correcting seasonal variations of the contribution of woody materials to LAI, and avoid over estimating the clump- ing effects of woody materials |
图2 凋落物法和异速生长方程法测定的叶面积指数(平均值±标准偏差)的比较。同一树种内的不同小写字母表示凋落物法和异速生长方程法计算的叶面积指数在α = 0.05水平上差异显著。
Fig. 2 Comparison of leaf area index (LAI) from litter collec- tion and allometry (mean ± SD). Different lowercase letters for the same species indicated a significant difference among LAI from litter collection and allometry at the 0.05 level. Am, Acer mono; Fm, Fraxinus mandschurica; Lg, Larix gmelinii; Ta, Tilia amurensis.
数值 Value | 0-45º (1-3环 Rings 1-3) | 0-60º (1-4环 Ring 1-4) | 45º-60º (4环 Ring 4) | 0-75º (1-5环 Rings 1-5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | ||||
最大值 Maximum | 4.25 | 7.03 | 4.27 | 5.87 | 5.25 | 5.83 | 4.39 | 5.83 | |||
最小值 Minimum | 3.03 | 2.96 | 3.4 | 2.54 | 3.13 | 2.20 | 3.44 | 2.45 | |||
平均值 Mean | 3.72c | 4.96A | 3.89bc | 4.42AB | 4.33a | 3.80B | 4.04b | 4.11B | |||
标准偏差 Standard deviation | 0.31 | 1.18 | 0.2 | 1.07 | 0.58 | 1.15 | 0.28 | 0.98 | |||
与凋落物法LAI的差异 Difference with LAI from litter collection (%) | 32 | 9 | 28 | 18 | 19 | 30 | 25 | 24 | |||
与异速生长方程法LAI的差异 Difference with LAI from allometry (%) | 29 | 8 | 26 | 17 | 18 | 28 | 23 | 24 |
表3 比较不同天顶角范围内半球摄影法(DHP)和LAI-2000植物冠丛分析仪法(LAI-2000法)测定的有效叶面积指数及其与直接法(凋落物法和异速生长方程法)测定值间的差异
Table 3 Comparison of effective leaf area index (Le) from digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer method (LAI-2000 method) with different zenith angles and differences between these values and leaf area index (LAI) from direct methods (litter collection and allometry)
数值 Value | 0-45º (1-3环 Rings 1-3) | 0-60º (1-4环 Ring 1-4) | 45º-60º (4环 Ring 4) | 0-75º (1-5环 Rings 1-5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | ||||
最大值 Maximum | 4.25 | 7.03 | 4.27 | 5.87 | 5.25 | 5.83 | 4.39 | 5.83 | |||
最小值 Minimum | 3.03 | 2.96 | 3.4 | 2.54 | 3.13 | 2.20 | 3.44 | 2.45 | |||
平均值 Mean | 3.72c | 4.96A | 3.89bc | 4.42AB | 4.33a | 3.80B | 4.04b | 4.11B | |||
标准偏差 Standard deviation | 0.31 | 1.18 | 0.2 | 1.07 | 0.58 | 1.15 | 0.28 | 0.98 | |||
与凋落物法LAI的差异 Difference with LAI from litter collection (%) | 32 | 9 | 28 | 18 | 19 | 30 | 25 | 24 | |||
与异速生长方程法LAI的差异 Difference with LAI from allometry (%) | 29 | 8 | 26 | 17 | 18 | 28 | 23 | 24 |
数值 Value | 树干比例 astem (%) | 集聚指数 ΩE | 针簇比 γE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-45º (1-3环 Rings 1-3) | 0-60º (1-4环 Ring 1-4) | 45º-60º (4环 Ring 4) | 0-75º (1-5环 Rings 1-5) | ||||||||||
DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | ||||||
最大值 Maximum | 11 | 11 | 9 | 13 | 9 | 17 | 8 | 13 | 0.91 | 1.79 | |||
最小值 Minimum | 6 | 5 | 7 | 5 | 6 | 6 | 7 | 6 | 0.84 | 1.03 | |||
平均值 Mean | 8 | 7 | 8 | 8 | 7 | 10 | 7 | 9 | 0.89 | 1.33 | |||
标准偏差 Standard deviation | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 0.02 | 0.18 | |||
变异系数 Coefficient of variation (%) | 13 | 32 | 10 | 31 | 14 | 34 | 7 | 32 | 3 | 15 |
表4 兴安落叶松人工林不同天顶角范围内的树干比例及集聚指数和针簇比
Table 4 Stem-to-total area ratio (αstem) within different zenith angles, clumping index (ΩE) and needle-to-shoot area ratio (γE) in the Larix gmelinii plantation
数值 Value | 树干比例 astem (%) | 集聚指数 ΩE | 针簇比 γE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-45º (1-3环 Rings 1-3) | 0-60º (1-4环 Ring 1-4) | 45º-60º (4环 Ring 4) | 0-75º (1-5环 Rings 1-5) | ||||||||||
DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | DHP | LAI-2000法 LAI-2000 method | ||||||
最大值 Maximum | 11 | 11 | 9 | 13 | 9 | 17 | 8 | 13 | 0.91 | 1.79 | |||
最小值 Minimum | 6 | 5 | 7 | 5 | 6 | 6 | 7 | 6 | 0.84 | 1.03 | |||
平均值 Mean | 8 | 7 | 8 | 8 | 7 | 10 | 7 | 9 | 0.89 | 1.33 | |||
标准偏差 Standard deviation | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 0.02 | 0.18 | |||
变异系数 Coefficient of variation (%) | 13 | 32 | 10 | 31 | 14 | 34 | 7 | 32 | 3 | 15 |
图3 经过不同校正方案校正后不同天顶范围内半球摄影法(DHP)和LAI-2000植物冠丛分析仪法(LAI-2000法)测定的有效叶面积指数(LAI)和凋落物法测定的LAI (平均值±标准偏差)。校正方案A、B、C同表2。同一校正方案内的不同小写字母表示不同方法测定的叶面积指数间在α = 0.05水平上差异显著。
Fig. 3 Effective leaf area index (LAI) after corrected by different correction schemes within different zenith angles for digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer method (LAI-2000 method) and LAI from the litter collection method (mean ± SD). Correction scheme A, B and C see Table 2. Different lowercase letters with the same correction scheme meant significant difference among LAI from different methods at the 0.05 level.
1 | Behera SK, Srivastava P, Pathre UV, Tuli R (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer. Agricultural and Forest Meteorology, 150, 307-311. |
2 | Bréda NJJ (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403-2417. |
3 | Chen J, Liu J, Cihlar J, Goulden M (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124, 99-119. |
4 | Chen JM (1996). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135-163. |
5 | Chen JM, Black TA (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421-429. |
6 | Chen JM, Cihlar J (1995). Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics, 34, 6211-6222. |
7 | Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006). Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140, 257-268. |
8 | Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research, 102, 29429-29443. |
9 | Chen X, Sang WG (2007). Dynamics of leaf area index and canopy openness for three forest communities in the warm temperate zone of China. Journal of Plant Ecology (Chinese Version), 31, 431-436. (in Chinese with English abstract)[陈厦, 桑卫国 (2007). 暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态. 植物生态学报, 31, 431-436.] |
10 | Cutini A, Matteucci G, Mugnozza G (1998). Estimation of leaf area index with the LI-COR LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55-65. |
11 | Dufrêne E, Bréda N (1995). Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia, 104, 156-162. |
12 | Editorial Board of Forest in China(1997) . Forest in China. Vol. 2. China Forestry Publishing House, Beijing. 592-607. (in Chinese)[中国森林编辑委员会 (1997). 中国森林第二卷. 中国林业出版社, 北京. 592-607.] |
13 | Eriksson H, Eklundh L, Hall K, Lindroth A (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27-37. |
14 | Fang H, Li W, Wei S, Jiang C (2014). Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198-199, 126-141. |
15 | Galia Selaya N, Oomen RJ, Netten JJ, Werger MJ, Anten NP (2008). Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221. |
16 | Gower ST, Norman JM (1991). Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology, 72, 1896-1900. |
17 | Gower ST, Reich PB, Son Y (1993). Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 12, 327-345. |
18 | Hao J, Xiong W, Wang YH, Yu PT, Liu YH, Xu LH, Wang YH, Zhang XB (2012). The comparison and dynamic calibration between the LAI values of a Larix principis-rupprechtii plantation determined by canopy scanner and littr-fall collection.Forest Research, 25, 231-235. (in Chinese with English abstract)[郝佳, 熊伟, 王彦辉, 于澎涛, 刘延惠, 徐丽宏, 王轶浩, 张晓蓓 (2012). 华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态校正. 林业科学研究, 25, 231-235.] |
19 | Ishihara MI, Hiura T (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest.Agricultural and Forest Meteorology, 151, 1016-1022. |
20 | Jonckheere I, Muys B, Coppin P (2005). Allometry and evaluation of in situ optical LAI determination in Scots pine: A case study in Belgium. Tree Physiology, 25, 723-732. |
21 | Kucharik CJ, Norman JM, Gower ST (1998). Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91, 69-88. |
22 | Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129, 187-207. |
23 | Liu ZL, Chen JM, Jin GZ, Qi YJ (2015a). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agricultural and Forest Meteorology, 209, 36-48. |
24 | Liu ZL, Jin GZ (2014). Estimation of seasonal changes in leaf area index based on optical methods in spruce-fir valley forest.Chinese Journal of Applied Ecology, 25, 3420-3428. (in Chinese with English abstract)[刘志理, 金光泽 (2014). 基于光学仪器法测定谷地云冷杉林叶面积指数的季节变化. 应用生态学报, 25, 3420-3428.] |
25 | Liu ZL, Jin GZ (2015). Using litter collection and tree data to model leaf area index in the mixed broadleaved-Korean pine forest in the Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 35, 3190-3198. (in Chinese with English abstract)[刘志理, 金光泽 (2015). 利用凋落物法和林木因子模拟小兴安岭阔叶红松林叶面积指数. 生态学报, 35, 3190-3198.] |
26 | Liu ZL, Jin GZ, Chen JM, Qi YJ (2015b). Evaluating optical measurements of leaf area index against litter collection in a mixed broadleaved-Korean pine forest in China. Trees- Structure and Function, 29, 59-73. |
27 | Liu ZL, Jin GZ, Zhou M (2014). Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods.Chinese Journal of Plant Ecology, 38, 843-856. (in Chinese with English abstract)[刘志理, 金光泽, 周明 (2014). 利用直接法和间接法测定针阔混交林叶面积指数的季节动态. 植物生态学报, 38, 843-856.] |
28 | Liu ZL, Wang XC, Chen JM, Wang CK, Jin GZ (2015c). On improving the accuracy of digital hemispherical photography measurements of seasonal leaf area index variation in deciduous broadleaf forests. Canadian Journal of Forest Research, 45, 721-731. |
29 | Luo TX, Pan YD, Ouyang H, Shi PL, Luo J, Yu ZL, Lu Q (2004). Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography, 13, 345-358. |
30 | Ma ZQ, Liu QJ, Zeng HQ, Li XR, Chen YR, Lin YM, Zhang SH, Yang FT, Wang HQ (2008). Estimation of leaf area index of planted forests in subtropical China by photogrammetry.Acta Ecologica Sinica, 28, 1971-1980. (in Chinese with English abstract)[马泽清, 刘琪璟, 曾慧卿, 李轩然, 陈永瑞, 林耀明, 张时煌, 杨风亭, 汪宏清 (2008). 南方人工林叶面积指数的摄影测量. 生态学报, 28, 1971-1980.] |
31 | Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007). Estimation of leaf area index in eucalypt forest using digital photography. Agricultural and Forest Meteorology, 143, 176-188. |
32 | Maseyk KS, Lin T, Rotenberg E, Grünzweig JM, Schwartz A, Yakir D (2008). Physiology-phenology interactions in a productive semi-arid pine forest. New Phytologist, 178, 603-616. |
33 | Mason EG, Diepstraten M, Pinjuv GL, Lasserre J-P (2012). Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agricultural and Forest Meteorology, 166-167, 113-119. |
34 | Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agricultural and Forest Meteorology, 148, 1136-1146. |
35 | Ren H, Peng SL (1997). Comparison of methods of estmation leaf area index in Dinghushan forests.Acta Ecologica Sinica, 17, 220-223. (in Chinese with English abstract)[任海, 彭少麟 (1997). 鼎湖山森林群落的几种叶面积指数测定方法的比较. 生态学报, 17, 220-223.] |
36 | Richardson AD, Dail DB, Hollinger DY (2011). Leaf area index uncertainty estimates for model-data fusion applications. Agricultural and Forest Meteorology, 151, 1287-1292. |
37 | Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002). Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology, 112, 203-215. |
38 | Su HX, Bai F, Li GQ (2012). Seasonal dynamics in leaf area index in three typical temperate montane forests of China: A comparison of multi-observation methods.Chinese Journal of Plant Ecology, 36, 231-242. (in Chinese with English abstract)[苏宏新, 白帆, 李广起 (2012). 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较. 植物生态学报, 36, 231-242.] |
39 | Thimonier A, Sedivy I, Schleppi P (2010). Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods. European Journal of Forest Research, 129, 543-562. |
40 | Walter J-MN, Jonckheere I (2010). Image analysis of hemispherical photographs: Algorithms and calculations. In: Fournier RA, Hall RJ eds. Hemispherical Photography for Forestry: Theory, Methods, Applications. Kluwer, Alphen aan den Rijn, Netherlands . |
41 | Wang BQ, Liu ZL, Qi YJ, Jin GZ (2014). Seasonal dynamics of leaf area index using different methods in the Korean pine plantation.Acta Ecologica Sinica, 34, 1956-1964. (in Chinese with English abstract)[王宝琦, 刘志理, 戚玉娇, 金光泽 (2014). 利用不同方法测定红松人工林叶面积指数的季节动态. 生态学报, 34, 1956-1964.] |
42 | Wang C (2006). Biomass allometric equations for 10 co- occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16. |
43 | Zeng XP, Zhao P, Rao XQ, Cai XA (2008). Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land.Journal of Beijing Forestry University, 30(5), 33-38. (in Chinese with English abstract)[曾小平, 赵平, 饶兴权, 蔡锡安 (2008). 鹤山丘陵3种人工林叶面积指数的测定及其季节变化. 北京林业大学学报, 30(5), 33-38.] |
44 | Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014). Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sensing of Environment, 151, 44-56. |
45 | Zhang Y, Chen JM, Miller JR (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133, 166-181. |
46 | Zou J, Yan G, Zhu L, Zhang W (2009). Woody-to-total area ratio determination with a multispectral canopy imager. Tree Physiology, 29, 1069-1080. |
47 | Zou J, Yan GJ (2010). Optical methods for in situ measuring leaf area index of forest canopy: A review.Chinese Journal of Applied Ecology, 21, 2971-2979. (in Chinese with English abstract)[邹杰, 阎广建 (2010). 森林冠层地面叶面积指数光学测量方法研究进展. 应用生态学报, 21, 2971-2979.] |
[1] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[3] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[4] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[5] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[6] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[7] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[8] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[9] | 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856. |
[10] | 穆少杰, 周可新, 齐杨, 陈奕兆, 方颖, 朱超. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16. |
[11] | 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231-242. |
[12] | 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 2010, 34(4): 375-386. |
[13] | 侯琼, 王英舜, 杨泽龙, 师桂花. 内蒙古典型草原作物系数的动态模拟与确定[J]. 植物生态学报, 2010, 34(12): 1414-1423. |
[14] | 刘建立, 王彦辉, 于澎涛, 程丽莉, 熊伟, 徐丽宏, 杜阿朋. 六盘山叠叠沟小流域典型坡面土壤水分的植被承载力[J]. 植物生态学报, 2009, 33(6): 1101-1111. |
[15] | 赵传燕, 沈卫华, 彭焕华. 祁连山区青海云杉林冠层叶面积指数的反演方法[J]. 植物生态学报, 2009, 33(5): 860-869. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2834
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2006
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La