植物生态学报 ›› 2019, Vol. 43 ›› Issue (3): 217-226.DOI: 10.17521/cjpe.2019.0003
程毅康1,张辉1,王旭1,龙文兴1,2,*(),李超1,方燕山3,符明期3,朱孔新4
收稿日期:
2019-01-04
修回日期:
2019-02-27
出版日期:
2019-03-20
发布日期:
2019-05-30
通讯作者:
龙文兴 ORCID:0000-0002-9195-5878
基金资助:
CHENG Yi-Kang1,ZHANG Hui1,WANG Xu1,LONG Wen-Xing1,2,*(),LI Chao1,FANG Yan-Shan3,FU Ming-Qi3,ZHU Kong-Xin4
Received:
2019-01-04
Revised:
2019-02-27
Online:
2019-03-20
Published:
2019-05-30
Contact:
LONG Wen-Xing ORCID:0000-0002-9195-5878
Supported by:
摘要:
近年来, 功能多样性和谱系多样性为探究群落构建机制提供了新方法。为了更准确地了解海南岛高海拔热带云雾林群落构建机制, 该研究以海南岛霸王岭热带云雾林为对象, 测定7个环境因子和13个植物功能性状。利用主成分分析(PCA)筛选环境因子, 以霸王岭、尖峰岭和黎母山热带云雾林分布物种建立区域物种库, 结合模型, 分析Rao二次熵(RaoQ)和平均成对谱系距离(MPD)变化对植物群落构建的影响。结果表明: 林冠开阔度、土壤全磷含量和坡度是影响植物群落构建的关键环境因子。多数功能性状的系统发育信号很低且不显著, 说明热带云雾林群落的系统发育关系与功能性状随历史进程变化不一致。RaoQ和MPD的实际观测值都显著低于期望值, 且其标准效应值与土壤磷含量显著相关, 说明生境过滤是驱动热带云雾林群落构建的关键因子, 土壤磷含量是群落构建的关键环境筛。
程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响. 植物生态学报, 2019, 43(3): 217-226. DOI: 10.17521/cjpe.2019.0003
CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly. Chinese Journal of Plant Ecology, 2019, 43(3): 217-226. DOI: 10.17521/cjpe.2019.0003
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样地面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfeng Mt. | 1 187.17- 1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥、丛花厚壳桂、美丽新木姜子、黄叶树 Castanopsis faberi, Cryptocarya densiflora, Neolitsea pulchella, Xanthophyllum hainanense |
霸王岭 Bawang Mt. | 1 313.24- 1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树、赤楠、九节、黄杞 Distylium racemosum, Syzygium buxifolium, Psychotria rubra, Engelhardtia roxburghiana |
黎母山 Limu Mt. | 1 363.73- 1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 普洱茶、岭南青冈、罗浮锥、细枝柃 Camellia sinensis var. assamica, Cyclobalanopsis championii, Castanopsis faberi, Eurya loquaiana |
表1 海南岛云雾林样地概况
Table 1 Information on the study sites in the tropical cloud forest in Hainan Island
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样地面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfeng Mt. | 1 187.17- 1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥、丛花厚壳桂、美丽新木姜子、黄叶树 Castanopsis faberi, Cryptocarya densiflora, Neolitsea pulchella, Xanthophyllum hainanense |
霸王岭 Bawang Mt. | 1 313.24- 1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树、赤楠、九节、黄杞 Distylium racemosum, Syzygium buxifolium, Psychotria rubra, Engelhardtia roxburghiana |
黎母山 Limu Mt. | 1 363.73- 1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 普洱茶、岭南青冈、罗浮锥、细枝柃 Camellia sinensis var. assamica, Cyclobalanopsis championii, Castanopsis faberi, Eurya loquaiana |
环境变量 Environmental variable | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
林冠开阔度 CO (%) | -0.33 | - | 0.89 | -0.24 |
土壤有机质含量 SOM (g·kg-1) | -0.35 | 0.47 | -0.23 | -0.34 |
全磷含量 TP (g·kg-1) | -0.50 | - | - | 0.31 |
全氮含量 TN (g·kg-1) | -0.47 | -0.11 | -0.32 | -0.15 |
有效氮含量 AN (mg·kg-1) | -0.47 | -0.19 | -0.19 | -0.19 |
有效磷含量 AP (mg·kg-1) | 0.24 | 0.59 | - | -0.48 |
坡度 SP (o) | 0.13 | -0.61 | - | -0.66 |
特征值 Characteristic value | 3.32 | 1.87 | 0.48 | 0.17 |
解释方差比例 Explained variance proportion | 0.52 | 0.27 | 0.10 | 0.07 |
累积解释方差比例 Cumulative explained variance proportion | 0.52 | 0.79 | 0.89 | 0.96 |
表2 热带云雾林环境因子的主成分分析
Table 2 Principle component analysis (PCA) among environment factors in tropical cloud forest
环境变量 Environmental variable | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
林冠开阔度 CO (%) | -0.33 | - | 0.89 | -0.24 |
土壤有机质含量 SOM (g·kg-1) | -0.35 | 0.47 | -0.23 | -0.34 |
全磷含量 TP (g·kg-1) | -0.50 | - | - | 0.31 |
全氮含量 TN (g·kg-1) | -0.47 | -0.11 | -0.32 | -0.15 |
有效氮含量 AN (mg·kg-1) | -0.47 | -0.19 | -0.19 | -0.19 |
有效磷含量 AP (mg·kg-1) | 0.24 | 0.59 | - | -0.48 |
坡度 SP (o) | 0.13 | -0.61 | - | -0.66 |
特征值 Characteristic value | 3.32 | 1.87 | 0.48 | 0.17 |
解释方差比例 Explained variance proportion | 0.52 | 0.27 | 0.10 | 0.07 |
累积解释方差比例 Cumulative explained variance proportion | 0.52 | 0.79 | 0.89 | 0.96 |
图2 海南岛热带云雾林群落环境因子相关性分析。CO, 林冠开阔度; SOM, 土壤有机质含量; TP, 全磷含量; TN, 全氮含量; AN, 有效氮含量; AP, 有效磷含量; SP, 坡度。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Correlation analysis among environmental factors of Hainan tropical cloud forests. CO, canopy openness; SOM, soil organic matter content; TP, total phosphorus content; TN, total nitrogen content; AN, available nitrogen content; AP, available phosphorus content; SP, slope. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
功能性状 Functional trait | K | p |
---|---|---|
根部氮含量 Root nitrogen content (RN) | 0.258 | 0.639 |
根部磷含量 Root phosphorus content (RP) | 0.405 | 0.193 |
根部可溶性糖含量 Root soluble sugar content (RS) | 0.210 | 0.820 |
叶片氮含量 Leaf nitrogen content (LN) | 0.677 | 0.027 |
叶片磷含量 Leaf phosphorus content (LP) | 0.579 | 0.055 |
叶片可溶性糖含量 Leaf soluble sugar content (LS) | 0.190 | 0.857 |
茎干氮含量 Stem nitrogen content (SN) | 0.448 | 0.195 |
茎干磷含量 Stem phosphorus content (SP) | 4.258 | 0.005 |
茎干可溶性糖含量 Stem soluble sugar content (SS) | 0.314 | 0.429 |
比叶面积 Specific leaf area (SLA) | 0.373 | 0.413 |
叶绿素含量 Chlorophyll content (Chl) | 0.459 | 0.062 |
叶片厚度 Leaf thickness (LTh) | 0.282 | 0.589 |
木材密度 Wood density (WD) | 0.294 | 0.527 |
表3 热带云雾林植物功能性状的系统发育信号
Table 3 Phylogenetic signal of plants functional traits in tropical cloud forest
功能性状 Functional trait | K | p |
---|---|---|
根部氮含量 Root nitrogen content (RN) | 0.258 | 0.639 |
根部磷含量 Root phosphorus content (RP) | 0.405 | 0.193 |
根部可溶性糖含量 Root soluble sugar content (RS) | 0.210 | 0.820 |
叶片氮含量 Leaf nitrogen content (LN) | 0.677 | 0.027 |
叶片磷含量 Leaf phosphorus content (LP) | 0.579 | 0.055 |
叶片可溶性糖含量 Leaf soluble sugar content (LS) | 0.190 | 0.857 |
茎干氮含量 Stem nitrogen content (SN) | 0.448 | 0.195 |
茎干磷含量 Stem phosphorus content (SP) | 4.258 | 0.005 |
茎干可溶性糖含量 Stem soluble sugar content (SS) | 0.314 | 0.429 |
比叶面积 Specific leaf area (SLA) | 0.373 | 0.413 |
叶绿素含量 Chlorophyll content (Chl) | 0.459 | 0.062 |
叶片厚度 Leaf thickness (LTh) | 0.282 | 0.589 |
木材密度 Wood density (WD) | 0.294 | 0.527 |
图3 热带云雾林功能多样性和谱系多样性期望值与观测值比较。预期值, 灰色直方图; 观测值, 黑色垂直线。CO, 林冠开阔度; TP, 全磷含量; SP, 坡度。
Fig. 3 Comparison of functional diversity and phylogenetic diversity expectations with observed values in tropical cloud forest. The null distribution is the grey histogram and the observed values are the black vertical bars. MPD, mean pairwise distance; RaoQ, Rao’s quadratic entropy.
图4 热带云雾林Rao二次熵指数的标准效应值(SES.RaoQ)沿环境梯度的变化规律。CO, 林冠开阔度; TP, 全磷含量; SP, 坡度。
Fig. 4 Patterns of standard effect size of Rao’s quadratic entropy (SES.RaoQ) along environmental gradients in tropical cloud forest. CO, canopy openness; TP, total phosphorus content; SP, slope.
图5 热带云雾林净种间亲缘关系指数(NRI)沿环境梯度的变化规律。CO, 林冠开阔度; TP, 全磷含量; SP, 坡度。
Fig. 5 Patterns of net relatedness index (NRI) along environmental gradients in tropical cloud forest. CO, canopy openness; TP, total phosphorus content; SP, slope.
[1] | Agricultural Chemistry Committee of Soil Society of China ( 1983). Agricultural chemical Routine Analysis Method of Soil. Science Press, Beijing. 186-194. |
[ 中国土壤学会农业化学专业委员会( 1983). 土壤农业化学常规分析方法. 科学出版社, 北京. 186-194.] | |
[2] | Andersen KM, Endara MJ, Turner BL, Dalling JW ( 2012). Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia, 168, 519-531. |
[3] | Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. |
[4] | Botta-Dukát Z, Czúcz B ( 2016). Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126. |
[5] | Bu WS, Zang RG, Ding Y ( 2014). Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecologica, 55, 1-7. |
[6] | Cadotte MW, Cardinale BJ, Oakley TH ( 2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017. |
[7] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW ( 2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. |
[8] | CBOL Plant Wording Group ( 2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794-12797. |
[9] | Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden A, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[10] | Cornell HV ( 1985). Local and regional richness of cynipine gall wasps on California oaks. Ecology, 66, 1247-1260. |
[11] | Cornell HV, Harrison SP ( 2014). What are species pools and when are they important? Annual Review of Ecology, Evolution,and Systematics, 45, 45-67. |
[12] | de Bello F, Price JN, Münkemüller T, Liira J, Zobel M, Thuiller W, Gerhold P, Götzenberger L, Lavergne S, Lepš S, Zobel K, Pärtel M ( 2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263-2273. |
[13] | Eller CB, Burgess SSO, Oliveira RS ( 2015). Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiology, 35, 387-399. |
[14] | Eriksson O ( 1993). The species-pool hypothesis and plant community diversity. Oikos, 68, 371-374. |
[15] | Goldsmith GR, Matzke NJ, Dawson TE ( 2013). The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, 16, 307-314. |
[16] | Gonzalez-Caro S, Umana MN, Alvarez E, Stevenson PR, Swenson NG ( 2014). Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. Journal of Plant Ecology, 7, 145-153. |
[17] | Hardy OJ ( 2008). Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology, 96, 914-926. |
[18] | Harrison S, Cornell H ( 2008). Toward a better understanding of the regional causes of local community richness. Ecology Letters, 11, 969-979. |
[19] | He JS, Wang X, Flynn DFB, Wang L, Schmid B, Fang J ( 2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791. |
[20] | Kang Y, Deng Z, Zang R, Long W ( 2017). DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports, 7, 12564. DOI: 10.1038/s41598-017-13057-0. |
[21] | Kraft NJB, Ackerly DD ( 2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[22] | Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community assembly in an Amazonia forest. Science, 322, 580-582. |
[23] | Long WX, Schamp BS, Zang RG, Ding Y, Huang YF, Xiang YZ ( 2015 a). Community assembly in a tropical cloud forest related to specific leaf area and maximum species height. Journal of Vegetation Science, 47, 416-423. |
[24] | Long WX, Xiong MH, Zang RG, Schamp BS, Yang XB, Ding Y, Huang YF, Xiang YZ ( 2015 b). Changes in patterns of species co-occurrence across two tropical cloud forests differing in soil nutrients and air temperature. Biotropica, 47, 416-423. |
[25] | Long WX, Zang RG, Ding Y ( 2011 a). Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests. Flora, 206, 896-903. |
[26] | Long WX, Zang RG, Schamp BS, Ding Y ( 2011 b). Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia, 167, 1103-1113. |
[27] | Losos JB ( 2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995-1007. |
[28] | Luna-Vega I, Magallón S ( 2010). Phylogenetic composition of angiosperm diversity in the cloud forests of Mexico. Biotropica, 42, 444-454. |
[29] | Mason NWH, Richardson SJ, Peltzer DA, Bello FD, Wardle DA, Allen RB ( 2012). Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 100, 678-689. |
[30] | McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[31] | McIntire EJB, Fajardo A ( 2014). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403-416. |
[32] | Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E ( 2013). Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22, 878-888. |
[33] | Naeem S, Wright JP ( 2003). Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567-579. |
[34] | Niu KC, Liu YN, Shen ZH, He FL, Fang JY ( 2009). Community assemble: The relative important of neutral theory and niche theory. Biodiversity Science, 17, 579-593. |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 ( 2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[35] | Paine CET, Baraloto C, Chave J, Hérault B ( 2011). Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos, 120, 720-727. |
[36] | Pärtel M, Szava-Kovats R, Zobel M ( 2011). Dark diversity: Shedding light on absent species. Trends in Ecology & Evolution, 26, 124-128. |
[37] | Pearse WD, Jones A, Purvis A ( 2013). Barro Colorado Island’s phylogenetic assemblage structure across fine spatial scales and among clades of different ages. Ecology, 94, 2861-2872. |
[38] | Ricklefs RE ( 1987). Community diversity: Relative roles of local and regional processes. Science, 235, 206-207. |
[39] | Spasojevic MJ, Suding KN ( 2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[40] | Srivastava DS ( 1999). Using local-regional richness plots to test for species saturation: Pitfalls and potentials. Journal of Animal Ecology, 68, 1-16 |
[41] | Swenson NG ( 2011). Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLOS ONE, 6, e21264. DOI: 10.137/journal.pone.0021264. |
[42] | Swenson NG ( 2013). The assembly of tropical tree communities-the advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276. |
[43] | Swenson NG, Enquist BJ ( 2009). Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170. |
[44] | Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK ( 2006). The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424. |
[45] | Swenson NG, Erickson DL, Mi X, Bourg NA, Forero-Montaña J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thomson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ ( 2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93, S112-S125. |
[46] | Vamosi SM, Heard SB, Vamosi JC, Webb CO ( 2009). Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572-592. |
[47] | Wang XX, Long WX, Yang XB, Xiong MH, Kang Y, Huang J, Wang X, Hong XJ, Zhou ZL, Lu YQ, Fang J, Li SX ( 2016). Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island. Chinese Journal of Plant Ecology, 40, 469-479. |
[ 王茜茜, 龙文兴, 杨小波, 熊梦辉, 康勇, 黄瑾, 王旭, 洪小江, 周照骊, 陆雍泉, 方精, 李时兴 ( 2016). 海南岛3个林区热带云雾林植物多样性变化. 植物生态学报, 40, 469-479.] | |
[48] | Webb CO, Ackerly DD, Kembel SW ( 2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[49] | Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[50] | Weiher E, Keddy CPA ( 1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309-322. |
[51] | Yang J, Zhang G, Ci X, Swenson NG, Cao M, Sha LQ, Li J, Baskin CC, Slik JWF, Lin LX ( 2014). Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Functional Ecology, 28, 520-529. |
[52] | Zobel M, Scheiner S ( 2016). The species pool concept as a framework for studying patterns of plant diversity: Official organ of the International Association for Vegetation Science. Journal of Vegetation Science, 27, 8-18. |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[4] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[7] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[8] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[11] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[14] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[15] | 王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史. 海南热带云雾林附生维管植物对宿主的选择性[J]. 植物生态学报, 2022, 46(4): 405-415. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5765
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2928
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La