植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 543-552.DOI: 10.17521/cjpe.2020.0071
所属专题: 全球变化与生态系统
收稿日期:
2020-03-17
接受日期:
2020-03-25
出版日期:
2020-05-20
发布日期:
2020-04-30
通讯作者:
白娥
基金资助:
Received:
2020-03-17
Accepted:
2020-03-25
Online:
2020-05-20
Published:
2020-04-30
Contact:
Edith BAI
Supported by:
摘要:
随着人口的增长和人类社会的发展, 土地利用与土地覆盖变化已经是不可避免。土地利用与土地覆盖变化不仅对生态系统的要素、结构和功能产生深远的影响, 也会对全球变化产生反馈作用。针对土地利用与土地覆盖变化的过程、驱动机制以及在各个方面可能产生的生态环境效应的科学研究已经全面开展。该文综述了土地利用与土地覆盖变化对气候、土壤、生物地球化学循环、生物多样性以及区域生态环境等影响方面的研究进展, 并提出了相关研究的前沿方向展望。随着新技术的不断发展, 学者们将更多地侧重预测未来全球变化背景下的土地利用与土地覆盖变化趋势、合理性以及适应性, 为可持续发展提供基础资料和理论依据。
白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响. 植物生态学报, 2020, 44(5): 543-552. DOI: 10.17521/cjpe.2020.0071
Edith BAI, XUE Bing. A review of influences of land use and land cover change on ecosystems. Chinese Journal of Plant Ecology, 2020, 44(5): 543-552. DOI: 10.17521/cjpe.2020.0071
图1 2000-2019年发表的全球和中国的土地利用和土地覆盖变化相关文献数量变化(A)及其主要分布领域(B)。以“land use and land cover change”为关键词在Web of Science搜索而得, 截止时间为2019年11月。
Fig. 1 The number of papers published from 2000 to 2019 in China and world (A) and the main subject areas of these publications (B). Based on searching on Web of Science using keyword “land use and land cover change”.
序号 No. | 文献信息 Literature information | 备注 Note |
---|---|---|
1 | 最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data | |
2 | 综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources | |
3 | 综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent | |
4 | 对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle | |
5 | 将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models | |
6 | LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles | |
7 | 全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate | |
8 | 以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity | |
9 | 中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy | |
10 | 以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data |
表1 2000年以来土地利用和土地覆盖变化相关研究10篇重要的高被引论文
Table 1 Ten highly cited publications in the field of land use and land cover change since 2000
序号 No. | 文献信息 Literature information | 备注 Note |
---|---|---|
1 | 最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data | |
2 | 综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources | |
3 | 综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent | |
4 | 对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle | |
5 | 将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models | |
6 | LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles | |
7 | 全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate | |
8 | 以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity | |
9 | 中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy | |
10 | 以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data |
区域 Region | 年份 Year | 森林 Forest (Mhm2) | 农田 Cropland (Mhm2) | 牧场 Pasture (Mhm2) | 其他 Others (Mhm2) |
---|---|---|---|---|---|
热带非洲 Tropical Africa | 1850 | 792 | 78 | 777 | 781 |
2015 | 614 | 241 | 809 | 765 | |
拉丁美洲 Latin America | 1850 | 1 248 | 18 | 229 | 555 |
2015 | 932 | 198 | 564 | 356 | |
南亚及东南亚 South Asia and Southeast Asia | 1850 | 533 | 168 | 23 | 222 |
2015 | 326 | 333 | 36 | 250 | |
热带总计 Tropical subtotal | 1850 | 2 573 | 264 | 1 029 | 1 557 |
2015 | 1 872 | 772 | 1 408 | 1 371 | |
北美洲 North America | 1850 | 768 | 60 | 75 | 1 078 |
2015 | 657 | 200 | 266 | 859 | |
欧洲 Europe | 1850 | 130 | 166 | 94 | 103 |
2015 | 174 | 122 | 71 | 126 | |
“苏联” “Former USSR” | 1850 | 879 | 60 | 112 | 1 180 |
2015 | 857 | 153 | 365 | 856 | |
中国 China | 1850 | 159 | 112 | 108 | 582 |
2015 | 208 | 130 | 393 | 229 | |
北非及中东 North Africa and the Middle East | 1850 | 40 | 54 | 225 | 987 |
2015 | 37 | 96 | 345 | 827 | |
东亚 East Asia | 1850 | 64 | 5 | 138 | 10 |
2015 | 49 | 9 | 113 | 45 | |
大洋洲 Oceania | 1850 | 210 | 9 | 299 | 291 |
2015 | 140 | 49 | 351 | 270 | |
温带总计 Temporal subtotal | 1850 | 2 249 | 466 | 1 050 | 4 231 |
2015 | 2 123 | 758 | 1 904 | 3 212 | |
全球 Global | 1850 | 4 823 | 730 | 2 079 | 5 788 |
2015 | 3 995 | 1 530 | 3 312 | 4 583 |
表2 1850-2015年几个主要地表覆盖类型的面积变化
Table 2 Area changes in major land use types from 1850 to 2015 in different regions
区域 Region | 年份 Year | 森林 Forest (Mhm2) | 农田 Cropland (Mhm2) | 牧场 Pasture (Mhm2) | 其他 Others (Mhm2) |
---|---|---|---|---|---|
热带非洲 Tropical Africa | 1850 | 792 | 78 | 777 | 781 |
2015 | 614 | 241 | 809 | 765 | |
拉丁美洲 Latin America | 1850 | 1 248 | 18 | 229 | 555 |
2015 | 932 | 198 | 564 | 356 | |
南亚及东南亚 South Asia and Southeast Asia | 1850 | 533 | 168 | 23 | 222 |
2015 | 326 | 333 | 36 | 250 | |
热带总计 Tropical subtotal | 1850 | 2 573 | 264 | 1 029 | 1 557 |
2015 | 1 872 | 772 | 1 408 | 1 371 | |
北美洲 North America | 1850 | 768 | 60 | 75 | 1 078 |
2015 | 657 | 200 | 266 | 859 | |
欧洲 Europe | 1850 | 130 | 166 | 94 | 103 |
2015 | 174 | 122 | 71 | 126 | |
“苏联” “Former USSR” | 1850 | 879 | 60 | 112 | 1 180 |
2015 | 857 | 153 | 365 | 856 | |
中国 China | 1850 | 159 | 112 | 108 | 582 |
2015 | 208 | 130 | 393 | 229 | |
北非及中东 North Africa and the Middle East | 1850 | 40 | 54 | 225 | 987 |
2015 | 37 | 96 | 345 | 827 | |
东亚 East Asia | 1850 | 64 | 5 | 138 | 10 |
2015 | 49 | 9 | 113 | 45 | |
大洋洲 Oceania | 1850 | 210 | 9 | 299 | 291 |
2015 | 140 | 49 | 351 | 270 | |
温带总计 Temporal subtotal | 1850 | 2 249 | 466 | 1 050 | 4 231 |
2015 | 2 123 | 758 | 1 904 | 3 212 | |
全球 Global | 1850 | 4 823 | 730 | 2 079 | 5 788 |
2015 | 3 995 | 1 530 | 3 312 | 4 583 |
图2 全球10个地区的土地利用及土地覆被变化造成的碳年净排放量(译自Houghton和Nassikas (2017))。
Fig. 2 The net carbon emission fluxes caused by land use and land cover change in the ten regions globally (translated from Houghton & Nassikas, 2017)
[1] | Adrianto HA, Spracklen DV, Arnold SR (2019). Relationship between fire and forest cover loss in Riau Province, Indonesia Between 2001 and 2012. Forests, 10, 889. DOI: 10.3390/f10100889. |
[2] | Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Lovett AA, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, van Soest D, Termansen M (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science, 341, 45-50. |
[3] | Bonfils C, Lobell D (2007). Empirical evidence for a recent slowdown in irrigation-induced cooling. Proceedings of the National Academy of Sciences of the United States of America, 104, 13582-13587. |
[4] | Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325-1346. |
[5] | D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007). The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. International Journal of Climatology, 27, 633-647. |
[6] | Devaraju N, Bala G, Modak A (2015). Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proceedings of the National Academy of Sciences of the United States of America, 112, 3257-3262. |
[7] | Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606. |
[8] | Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631. |
[9] | Fall S, Diffenbaugh NS, Niyogi D, Pielke RA, Rochon G (2010). Temperature and equivalent temperature over the United States (1979-2005). International Journal of Climatology, 30, 2045-2054. |
[10] | Findell KL, Pitman AJ, England MH, Pegion PJ (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. Journal of Climate, 22, 3248-3269. |
[11] | Gao YZ, Han XG, Wang SP (2004). The effects of grazing on grassland soils. Acta Ecologica Sinica, 24, 790-797. |
[ 高英志, 韩兴国, 汪诗平 (2004). 放牧对草原土壤的影响. 生态学报, 790-797.] | |
[12] | Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE Database. Global Biogeochemical Cycles, 15, 417-433. |
[13] | Grimm NB, Arrowsmith JR, Eisinger C, Heffernan J, Macleod A, Lewis DB, Prashad L, Rychener T, Roach WJ, Sheibley RW (2004). Effects of urbanization on nutrient biogeochemistry of aridland streams//Defries RS, Asner GP, Houghton RA. Ecosystems and Land Use Change. American Geophysical Union, Washington. 129-146. |
[14] | Hergoualc’h K, Verchot LV (2011). Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Global Biogeochemical Cycles, 25, GB2001. DOI: 10.1029/2009GB003718. |
[15] | Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quere C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142. |
[16] | Houghton RA, Nassikas AA (2017). Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochemical Cycles, 31, 456-472. |
[17] | Houlton BZ, Marklein AR, Bai E (2015). Representation of nitrogen in climate change forecasts. Nature Climate Change, 5, 398-401. |
[18] | Huang Y, Sun W, Zhang W, Yu Y, Su Y, Song C (2010). Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology, 16, 680-695. |
[19] | Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161. |
[20] | Karl TR, Gleason BE, Menne MJ, McMahon JR, Heim RR, Brewer MJ, Kunkel KE, Arndt DS, Privette JL, Bates JJ, Groisman PY, Easterling DR (2012). U.S. temperature and drought: recent anomalies and trends. Eos, Transactions American Geophysical Union, 93, 473-474. |
[21] | Koschke L, Furst C, Frank S, Makeschin F (2012). A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecological Indicators, 21, 54-66. |
[22] | Kuemmerle T, Erb K, Meyfroidt P, Muller D, Verburg PH, Estel S, Haberl H, Hostert P, Jepsen MR, Kastner T, Levers C, Lindner M, Plutzar C, Verkerk PJ, van der Zanden EH, Reenberg A (2013). Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 5, 484-493. |
[23] | Lai L, Huang X, Yang H, Chuai X, Zhang M, Zhong T, Chen Z, Chen Y, Wang X, Thompson JR (2016). Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2, e1601063. DOI: 10.1126/sciadv.1601063. |
[24] | Lambin EF, Geist HJ, Lepers E (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205-241. |
[25] | Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472. |
[26] | Li GY, Yang XD, Shi QR, Ma WJ, Wang XH, Yan ER (2014). Effects of clear-felling on soil nutrient pools and nitrogen mineralization and nitrification in Tiantong, Zhejiang Province. Chinese Journal of Ecology, 33, 709-715. |
[ 李光耀, 杨晓东, 史青茹, 马文济, 王希华, 阎恩荣 (2014). 浙江天童森林砍伐对土壤养分库和氮矿化-硝化特征的影响. 生态学杂志, 33, 709-715.] | |
[27] | Li XZ, Chen ZZ (1997). Nitrogen loss and management in grazed grassland. Climatic and Environmental Ressarch, 2(3), 44-53. |
[ 李香真, 陈佐忠 (1997). 放牧草地生态系统中氮素的损失和管理. 气候与环境研究, 2(3), 44-53.] | |
[28] | Liu JY, Zhang ZX, Xu XL, Kuang WH, Zhou WC, Zhang SW, Li RD, Yan CZ, Yu DS, Wu SX, Nan J (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494. |
[29] | Liu ML, Tian HQ (2010). China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Global Biogeochemical Cycles, 24, 18. |
[30] | Long HL, Liu YS, Wu XQ, Dong GH (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333. |
[31] | Naeem S, Prager C, Weeks B, Varga A, Flynn DFB, Griffin K, Muscarella R, Palmer M, Wood S, Schuster W (2016). Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity. Proceedings of the Royal Society B: Biological Sciences, 283, 20153005. DOI: 10.1098/rspb.2015.3005. |
[32] | Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011). Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology, 50, 1129-1144. |
[33] | Pan PP, Yang GS, Su WZ (2012). Progress on effects of land use change on land productivity. Progress in Geography, 31, 539-550. |
[ 潘佩佩, 杨桂山, 苏伟忠 (2012). 土地利用变化对土地生产力的影响研究进展. 地理科学进展, 31, 539-550.] | |
[34] | Pandit MK, Sodhi NS, Koh LP, Bhaskar A, Brook BW (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153-163. |
[35] | Pielke RA Sr., Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DDS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 360, 1705-1719. |
[36] | Quesada B, Arneth A, Robertson E, de Noblet-Ducoudré N (2018). Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environmental Research Letters, 13, 064023. DOI: 10.1088/1748-9326/aac4c3. |
[37] | Ramankutty N, Foley JA (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997-1027. |
[38] |
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
DOI URL PMID |
[39] | Sorooshian S, Li J, Hsu K-l, Gao X (2011). How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. Journal of Geophysical Research, 116, D06102. DOI: 10.1029/2010JD014775. |
[40] | Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183-2197. |
[41] | Turner BL, Lambin EF, Reenberg A (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 20666-20671. |
[42] | Turner DP, Koerper G, Gucinski H, Peterson C, Dixon RK (1993). Monitoring global change: comparison of forest cover estimates using remote sensing and inventory approaches. Environmental Monitoring and Assessment, 26, 295-305. |
[43] | Verburg PH (2006). Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21, 1171-1183. |
[44] | Verburg PH, Veldkamp A, Fresco LO (1999). Simulation of changes in the spatial pattern of land use in China. Applied Geography, 19, 211-233. |
[45] | Viglizzo EF, Paruelo JM, Laterra P, Jobbágy EG (2012). Ecosystem service evaluation to support land-use policy. Agriculture, Ecosystems and Environment, 154, 78-84. |
[46] | Wang C, Houlton BZ, Dai W, Bai E (2017). Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment, 574, 1044-1053. |
[47] | Wu JG, Lü JJ (2008). Effects of land use change on the biodiversity. Ecology and Environment, 17, 1276-1281. |
[ 吴建国, 吕佳佳 (2008). 土地利用变化对生物多样性的影响. 生态环境, 17, 1276-1281.] | |
[48] | Zhao J, Xiao H, Wu G (2000). Comparison analysis on physical and value assessment methods for ecosystems services. Chinese Journal of Applied Ecology, 11, 290-292. |
[49] | Li XB (2000). Study on hydrologic and water resource effects of land use and land cover change: social demand and scientific issues//Committee of Physical Geography, Geographical Society of China. Land Use and Land Cover Change and Its Environmental Effects. Planet Map Press, Beijing. |
[ 李秀彬 (2000). 土地覆被变化的水文水资源效应研究——社会需求与科学问题//中国地理学会自然地理专业委员会. 土地覆被变化及其环境效应. 星球地图出版社, 北京.] |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19