植物生态学报 ›› 2022, Vol. 46 ›› Issue (8): 904-918.DOI: 10.17521/cjpe.2021.0416
所属专题: 全球变化与生态系统; 光合作用; 生态系统碳水能量通量
刘沛荣1, 同小娟1,*(), 孟平2, 张劲松2, 张静茹1, 于裴洋1, 周宇2
收稿日期:
2021-11-16
接受日期:
2022-02-19
出版日期:
2022-08-20
发布日期:
2022-04-28
通讯作者:
同小娟
作者简介:
*(tongxj@bjfu.edu.cn)基金资助:
LIU Pei-Rong1, TONG Xiao-Juan1,*(), MENG Ping2, ZHANG Jin-Song2, ZHANG Jing-Ru1, YU Pei-Yang1, ZHOU Yu2
Received:
2021-11-16
Accepted:
2022-02-19
Online:
2022-08-20
Published:
2022-04-28
Contact:
TONG Xiao-Juan
Supported by:
摘要:
散射辐射是影响森林碳吸收的重要因子。然而, 有关生态系统总初级生产力(GPP)对散射辐射响应机理的理解仍有限。该研究利用中国东部6个人工林生态系统2019-2020年观测的碳通量数据和气象数据, 估算了散射辐射, 区分了直接辐射和散射辐射条件; 基于直角双曲线方程获取了不同辐射条件下生态系统光响应参数; 量化了GPP对散射辐射和直接辐射变化的响应; 采用偏相关方法分析了光照和环境因子对GPP日变化的贡献, 旨在探究生长季散射辐射对人工林生态系统GPP的影响机理。研究表明: 散射辐射增加可以有效促进冠层光合作用, 初始量子效率(α)和光合有效辐射(PAR)为1 000 μmol·m-2·s-1时的GPP (P1000)分别提高了47%-150%和2%-65%。与直接辐射条件相比, 散射辐射条件下的PAR每增加1 μmol·m-2·s-1, GPP增加0.86%-1.70%, 森林植被类型和站点物候变化会影响这一过程, 具有较低归一化植被指数(NDVI)的樟子松(Pinus sylvestris var. mongolica)和油松(Pinus tabuliformis)人工林GPP随单位PAR增加的变化量的增量(0.86%-1.00%)明显低于其他人工林站点的增量(1.04%-1.70%), 且植被NDVI与P1000存在显著正相关关系。在低光照时, PAR控制生态系统平均总初级生产力(GPPa)的变化; 在中等至高光照时, 散射辐射比例(DF)是影响GPPa的主要因子。在中等光照时, 散射辐射对应的光合作用接近于高光照时太阳辐射对应的光合作用, 且杉木(Cunninghamia lanceolata)、杨树(Populus spp.)、栓皮栎(Quercus variabilis)和华北落叶松(Larix gmelinii)在中高DF (≥0.5)时的GPPa比低DF (<0.5)高出27%-50%, 油松和樟子松在中高DF时的GPPa比低DF约高出2%。散射辐射条件下, 散射光合有效辐射(PARdif)解释了GPP变化的16%-45%, 气温(Ta)和饱和水汽压差(VPD)解释了杉木、栓皮栎和华北落叶松林GPP变化的10%-19%。在散射辐射条件下, 人工林在Ta为15-25 ℃和VPD为0-1 kPa时P1000最大。
刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响. 植物生态学报, 2022, 46(8): 904-918. DOI: 10.17521/cjpe.2021.0416
LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China. Chinese Journal of Plant Ecology, 2022, 46(8): 904-918. DOI: 10.17521/cjpe.2021.0416
站点 Site | 位置 Location | 海拔 Elevation (m) | 树种 Species | 冠层高度 Canopy height (m) | 生长季 Growing season (Month) | 土壤类型 Soil type | 开路红外分析仪 Open-path infrared gas analyzer | 三维超声风速仪 3-D sonic anemometer | 仪器高度 Height of instrument (m) |
---|---|---|---|---|---|---|---|---|---|
金寨 Jinzhai | 31.28° N, 115.68° E | 1 100 | 杉木 Cunninghamia lanceolata | 9.0 | 4-10 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 18 |
民权 Minquan | 34.72° N, 115.08° E | 100 | 杨树 Populus spp. | 17.0 | 4-9 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 34 |
济源 Jiyuan | 35.02° N, 112.47° E | 410 | 栓皮栎 Quercus variabilis | 12.5 | 4-10 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 25 |
黑水1 Heishui1 | 41.97° N, 119.42° E | 550 | 樟子松 Pinus sylvestris var. mongolica | 10.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 20 |
塞罕坝 Saihanba | 42.30° N, 117.42° E | 1 700 | 落叶松 Larix gmelinii | 9.0 | 5-9 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 18 |
黑水2 Heishui2 | 42.10° N, 119.48° E | 650 | 油松 Pinus tabuliformis | 8.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 16 |
表1 中国东部6个人工林通量观测站基本情况
Table 1 Description of flux sites of six typical planted forests in eastern China
站点 Site | 位置 Location | 海拔 Elevation (m) | 树种 Species | 冠层高度 Canopy height (m) | 生长季 Growing season (Month) | 土壤类型 Soil type | 开路红外分析仪 Open-path infrared gas analyzer | 三维超声风速仪 3-D sonic anemometer | 仪器高度 Height of instrument (m) |
---|---|---|---|---|---|---|---|---|---|
金寨 Jinzhai | 31.28° N, 115.68° E | 1 100 | 杉木 Cunninghamia lanceolata | 9.0 | 4-10 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 18 |
民权 Minquan | 34.72° N, 115.08° E | 100 | 杨树 Populus spp. | 17.0 | 4-9 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 34 |
济源 Jiyuan | 35.02° N, 112.47° E | 410 | 栓皮栎 Quercus variabilis | 12.5 | 4-10 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 25 |
黑水1 Heishui1 | 41.97° N, 119.42° E | 550 | 樟子松 Pinus sylvestris var. mongolica | 10.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 20 |
塞罕坝 Saihanba | 42.30° N, 117.42° E | 1 700 | 落叶松 Larix gmelinii | 9.0 | 5-9 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 18 |
黑水2 Heishui2 | 42.10° N, 119.48° E | 650 | 油松 Pinus tabuliformis | 8.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 16 |
图1 中国东部人工林生长季光合有效辐射(PAR)、饱和水汽压差(VPD)、气温(Ta)、降水量(P)和归一化植被指数(NDVI)的月变化(平均值±标准差)。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 1 Monthly variations of photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (Ta), precipitation (P) and normalized difference vegetation index (NDVI) during growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图2 中国东部人工林生长季午间(10:00-15:00)光合有效辐射(PAR)、散射光合有效辐射(PARdif)和直接光合有效辐射(PARdir)与散射辐射比例(DF)的关系(平均值±标准差)。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 2 Relationship between photosynthetically active radiation (PAR), diffuse photosynthetically active radiation (PARdif), direct photosynthetically active radiation (PARdir) and diffuse fraction (DF) at midday period (10:00-15:00) in growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图3 中国东部人工林生长季散射辐射比例(DF)的频率分布。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 3 Frequency distribution of diffuse fraction (DF) in growing season of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图4 中国东部人工林生长季散射辐射比例(DF)的日变化(平均值±标准差)。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 4 Diurnal variation of diffuse fraction (DF) during growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图5 中国东部人工林不同辐射条件下, 总初级生产力(GPP)与光合有效辐射(PAR)的关系(平均值±标准差)。PAR每间隔100 μmol·m-2·s-1计算0.5 h GPP的平均值。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 5 Relationship between gross primary productivity (GPP) and photosynthetically active radiation (PAR) under different radiation conditions of typical planted forests in eastern China (mean ± SD). GPP is 0.5 h averaged for every 100 μmol·m-2·s-1 of PAR. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
人工林 Plantation | 辐射条件 Radiation condition | α | Pmax (mg·m2·s-1) | P1000 (mg·m2·s-1) | 决定系数 Coefficient of determination | 样本数 Number of samples |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 散射辐射 Diffuse radiation condition | 0.045 | 1.94 | 0.70 | 0.61 | 3 611 |
直接辐射 Direct radiation condition | 0.020 | 1.97 | 0.61 | 0.45 | 891 | |
杨树 Populus spp. | 散射辐射 Diffuse radiation condition | 0.024 | 1.57 | 0.48 | 0.52 | 5 000 |
直接辐射 Direct radiation condition | 0.011 | 0.49 | 0.24 | 0.35 | 649 | |
栓皮栎 Quercus variabilis var. mongolica | 散射辐射 Diffuse radiation condition | 0.020 | 1.44 | 0.42 | 0.44 | 5 042 |
直接辐射 Direct radiation condition | 0.008 | 1.44 | 0.29 | 0.33 | 1 270 | |
樟子松 Pinus sylvestris | 散射辐射 Diffuse radiation condition | 0.026 | 0.78 | 0.32 | 0.42 | 1 636 |
直接辐射 Direct radiation condition | 0.015 | 0.52 | 0.29 | 0.35 | 943 | |
华北落叶松 Larix gmelinii | 散射辐射 Diffuse radiation condition | 0.021 | 2.37 | 0.55 | 0.56 | 1 705 |
直接辐射 Direct radiation condition | 0.013 | 1.65 | 0.43 | 0.59 | 679 | |
油松 Pinus tabuliformis | 散射辐射 Diffuse radiation condition | 0.025 | 1.00 | 0.38 | 0.53 | 1 841 |
直接辐射 Direct radiation condition | 0.017 | 0.73 | 0.37 | 0.39 | 951 |
表2 中国东部人工林不同辐射条件下, 生态系统初始量子效率(α)、潜在最大光合速率(Pmax)和高光照(光合有效辐射为1 000 µmol·m-2·s-1)的总初级生产力(P1000)
Table 2 Under different radiation conditions, canopy quantum efficiency (α), maximum canopy photosynthesis (Pmax) and gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) of typical planted forests in eastern China
人工林 Plantation | 辐射条件 Radiation condition | α | Pmax (mg·m2·s-1) | P1000 (mg·m2·s-1) | 决定系数 Coefficient of determination | 样本数 Number of samples |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 散射辐射 Diffuse radiation condition | 0.045 | 1.94 | 0.70 | 0.61 | 3 611 |
直接辐射 Direct radiation condition | 0.020 | 1.97 | 0.61 | 0.45 | 891 | |
杨树 Populus spp. | 散射辐射 Diffuse radiation condition | 0.024 | 1.57 | 0.48 | 0.52 | 5 000 |
直接辐射 Direct radiation condition | 0.011 | 0.49 | 0.24 | 0.35 | 649 | |
栓皮栎 Quercus variabilis var. mongolica | 散射辐射 Diffuse radiation condition | 0.020 | 1.44 | 0.42 | 0.44 | 5 042 |
直接辐射 Direct radiation condition | 0.008 | 1.44 | 0.29 | 0.33 | 1 270 | |
樟子松 Pinus sylvestris | 散射辐射 Diffuse radiation condition | 0.026 | 0.78 | 0.32 | 0.42 | 1 636 |
直接辐射 Direct radiation condition | 0.015 | 0.52 | 0.29 | 0.35 | 943 | |
华北落叶松 Larix gmelinii | 散射辐射 Diffuse radiation condition | 0.021 | 2.37 | 0.55 | 0.56 | 1 705 |
直接辐射 Direct radiation condition | 0.013 | 1.65 | 0.43 | 0.59 | 679 | |
油松 Pinus tabuliformis | 散射辐射 Diffuse radiation condition | 0.025 | 1.00 | 0.38 | 0.53 | 1 841 |
直接辐射 Direct radiation condition | 0.017 | 0.73 | 0.37 | 0.39 | 951 |
图6 中国东部人工林不同辐射条件下总初级生产力对单位光合有效辐射变化的响应。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 6 Response of gross primary productivity to changes in per photosynthetically effective radiation under different radiation conditions of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图7 中国东部人工林散射辐射条件下高光照(光合有效辐射为1 000 µmol·m-2·s-1)的总初级生产力(P1000)对与归一化植被指数(NDVI)之间的关系。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 7 Relationship between gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) and normalized difference vegetation index (NDVI) under diffuse sky radiation conditions of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图8 中国东部人工林生态系统平均总初级生产力(GPPa)与散射辐射比例(DF)和光合有效辐射(PAR)的关系。图中右上方无数据区域是由于散射辐射降低了PAR, 故在高值DF无对应PAR。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 8 Relationship among average gross primary productivity (GPPa), diffuse radiation fraction (DF) and photosynthetically effective radiation (PAR) of typical planted forests in eastern China. The region with no data in upper right indicates that there cannot be high magnitudes of PAR at high levels of DF because diffuse radiation reduces the magnitude of PAR. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图9 中国东部人工林散射辐射条件下散射光合有效辐射(PARdif)、气温(Ta)、饱和水汽压差(VPD)对总初级生产力(GPP)日变化的影响。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 9 Under diffuse conditions, diurnal variation of gross primary productivity (GPP) explained by diffuse photosynthetically active radiation (PARdif), temperature (Ta) and vapor pressure difference (VPD) of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
图10 中国东部人工林散射辐射条件下气温(Ta)和饱和水汽压差(VPD)对高光照(光合有效辐射为1 000 µmol·m-2·s-1)的总初级生产力(P1000)的影响。A, 杉木林。B, 杨树林。C, 栓皮栎林。D, 樟子松林。E, 华北落叶松林。F, 油松林。
Fig. 10 Under diffuse conditions, effects of temperature (Ta) and vapor pressure difference (VPD) on gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
[1] |
Alton PB, North PR, Los SO (2007). The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 13, 776-787.
DOI URL |
[2] |
Bai YF, Wang J, Zhang BC, Zhang ZH, Liang J (2012). Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China. Ecological Research, 27, 615-623.
DOI URL |
[3] |
Bailek N, Bouchouicha K, Al-Mostafa Z, El-Shimy M, Aoun N, Slimani A, Al-Shehri S (2018). A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South. Renewable Energy, 117, 530-537.
DOI URL |
[4] | Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013). Clouds and aerosols//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 571-658. |
[5] | Chapin III FS, Matson PA, Mooney HA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer, New York. |
[6] |
Cheng SJ, Bohrer G, Steiner AL, Hollinger DY, Suyker A, Phillips RP, Nadelhoffer KJ (2015). Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agricultural and Forest Meteorology, 201, 98-110.
DOI URL |
[7] |
Dengel S, Grace J (2010). Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions. Oecologia, 164, 797-808.
DOI PMID |
[8] |
Earles JM, Théroux-Rancourt G, Gilbert ME, McElrone AJ, Brodersen CR (2017). Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis. Plant Physiology, 174, 1082-1096.
DOI PMID |
[9] |
Emmel C, D’Odorico P, Revill A, Hörtnagl L, Ammann C, Buchmann N, Eugster W (2020). Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Global Change Biology, 26, 5164-5177.
DOI URL |
[10] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[11] | Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195-196, 32-37. |
[12] |
Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107, 4050. DOI: 10.1029/2001JD001242.
DOI |
[13] |
Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003). Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science, 299, 2035-2038.
PMID |
[14] |
Gu LH, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999). Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research: Atmospheres, 104, 31421-31434.
DOI URL |
[15] |
Gui X, Wang LC, Su X, Yi XP, Chen XX, Yao R, Wang SQ, (2021). Environmental factors modulate the diffuse fertilization effect on gross primary productivity across Chinese ecosystems. Science of the Total Environment, 793, 148443. DOI: 10.1016/j.scitotenv.2021.148443
DOI URL |
[16] |
Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China: Life Science, 56, 661-671.
DOI URL |
[17] |
Han JY, Zhang LM, Li SG, Wen XF, Li QK, Wang HM (2019). Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales. Science of the Total Environment, 651, 3002-3014.
DOI URL |
[18] | He XZ, Zhou T, Jia GS, Zhang ZY, Li XJ, Zhao C, Feng SH (2011). Simulation of the effect of changes in total photosynthetically active radiation and diffuse fraction on forest GPP. Journal of Natural Resources, 26, 619-634. |
[何学兆, 周涛, 贾根锁, 张自银, 李秀娟, 赵超, 冯胜辉 (2011). 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟. 自然资源学报, 26, 619-634.] | |
[19] |
Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. The Plant Cell, 24, 1921-1935.
DOI PMID |
[20] | Huang MT, Piao SL, Ciais P, Peñuelas J, Wang XH, Keenan TF, Peng SS, Berry JA, Wang K, Mao JF, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao MD, et al. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3, 772-779. |
[21] | Kambezidis HD, Kaskaoutis DG, Kalliampakos GK, Rashki A, Wild M (2016). The solar dimming/brightening effect over the Mediterranean Basin in the period 1979-2012. Journal of Atmospheric and Solar-Terrestrial Physics, 150-151, 31-46. |
[22] | Kanniah KD, Beringer J, Hutley L (2013). Exploring the link between clouds, radiation, and canopy productivity of tropical savannas. Agricultural and Forest Meteorology, 182-183, 304-313. |
[23] |
Kanniah KD, Beringer J, North P, Hutley L (2012). Control of atmospheric particles on diffuse radiation and terrestrial plant productivity. Progress in Physical Geography: Earth and Environment, 36, 209-237.
DOI URL |
[24] |
Knohl A, Baldocchi DD (2008). Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research, 113, G02023. DOI: 10.1029/2007JG000663.
DOI |
[25] |
Lee MS, Hollinger DY, Keenan TF, Ouimette AP, Ollinger SV, Richardson AD (2018). Model-based analysis of the impact of diffuse radiation on CO2 exchange in a temperate deciduous forest. Agricultural and Forest Meteorology, 249, 377-389.
DOI URL |
[26] |
Li DQ, Zhou YL, Ju WM, Wang HM, Liu YB, Wu XC (2014). Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle- leaf plantations. Chinese Journal of Plant Ecology, 38, 219-230.
DOI URL |
[李登秋, 周艳莲, 居为民, 王辉民, 柳艺博, 吴小翠 (2014). 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析. 植物生态学报, 38, 219-230.]
DOI |
|
[27] |
Liu PR, Tong XJ, Zhang JS, Meng P, Li J, Zhang JR (2020). Estimation of half-hourly diffuse solar radiation over a mixed plantation in North China. Renewable Energy, 149, 1360-1369.
DOI URL |
[28] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[29] |
McMillen RT (1988). An eddy correlation technique with extended applicability to non-simple terrain. Boundary- Layer Meteorology, 43, 231-245.
DOI URL |
[30] |
Melnikova I, Sasai T (2020). Effects of anthropogenic activity on global terrestrial gross primary production. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005403. DOI: 10.1029/2019JG005403.
DOI |
[31] |
Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017.
DOI URL |
[32] | Michaelis L, Menten ML (1913). Die Kinetik der Invertinwirkun. Biochemische Zeitschrift, 49, 333-369. |
[33] | National Forestry and Grassland Administration(2018). Forest Resources of China 2014-2018. China Forestry Publishing House, Beijing. |
[国家林业和草原局 (2018). 中国森林资源报告2014-2018. 中国林业出版社, 北京.] | |
[34] | Niinemets Ü (2007). Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment, 30, 1052-1071. |
[35] |
Niu SL, Classen AT, Luo YQ (2018). Functional traits along a transect. Functional Ecology, 32, 4-9.
DOI URL |
[36] |
Niyogi D, Chang HI, Saxena VK, Holt T, Alapaty K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Meyers T, Oechel WC, Pielke Sr RA, Wells R, Wilson K, Xue YK (2004). Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31, L20506. DOI: 10.1029/2004GL020915.
DOI URL |
[37] |
Oliphant AJ, Dragoni D, Deng B, Grimmond CSB, Schmid HP, Scott SL (2011). The role of sky conditions on gross primary production in a mixed deciduous forest. Agricultural and Forest Meteorology, 151, 781-791.
DOI URL |
[38] |
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL |
[39] | Park SB, Knohl A, Lucas-Moffat AM, Migliavacca M, Gerbig C, Vesala T, Peltola O, Mammarella I, Kolle O, Lavrič JV, Prokushkin A, Heimann M (2018). Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agricultural and Forest Meteorology, 250-251, 376-387. |
[40] |
Philippon N, Cornu G, Monteil L, Gond V, Moron V, Pergaud J, Sèze G, Bigot S, Camberlin P, Doumenge C, Fayolle A, Ngomanda A (2019). The light-deficient climates of western Central African evergreen forests. Environmental Research Letters, 14, 034007. DOI: 10.1088/1748-9326/aaf5d8.
DOI |
[41] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[42] |
Reich PB (2012). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279, 2128-2134.
DOI URL |
[43] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[44] |
Ridley B, Boland J, Lauret P (2010). Modelling of diffuse solar fraction with multiple predictors. Renewable Energy, 35, 478-483.
DOI URL |
[45] | Şen Z (2009). Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. Choice Reviews Online, 46, 46-2687. |
[46] | Sun JS, Zhou GS (2010). Review of advances in measurements and effects of diffuse radiation on terrestrial ecosystem productivity. Chinese Journal of Plant Ecology, 34, 452-461. |
[孙敬松, 周广胜 (2010). 散射辐射测量及其对陆地生态系统生产力影响的研究进展. 植物生态学报, 34, 452-461.]
DOI |
|
[47] |
Urban O, Janouš D, Acosta M, Czerný R, Marková I, Navrátil M, Pavelka M, Pokorný R, Šprtová M, Zhang R, Špunda V, Grace J, Marek MV (2007). Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13, 157-168.
DOI URL |
[48] |
Urban O, Klem K, Ač A, Havránková K, Holišová P, Navrátil M, Zitová M, Kozlová K, Pokorný R, Šprtová M, Tomášková I, Špunda V, Grace J (2012). Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26, 46-55.
DOI URL |
[49] |
Wang S, Ibrom A, Bauer-Gottwein P, Garcia M (2018). Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: an 11-year study in a high latitude deciduous forest. Agricultural and Forest Meteorology, 248, 479-493.
DOI URL |
[50] |
Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
DOI URL |
[51] | Wei N, Zhang M, Wang HM, Zhang LM, Wen XF, Liu SD (2017). The impacts of changes radiation on light use efficiency in a subtropical plantation coniferous forest. Acta Ecologica Sinica, 37, 3403-3414. |
[卫楠, 张弥, 王辉民, 张雷明, 温学发, 刘寿东 (2017). 散射辐射对亚热带人工针叶林光能利用率的影响. 生态学报, 37, 3403-3414.] | |
[52] |
Wild M (2012). Enlightening global dimming and brightening. Bulletin of the American Meteorological Society, 93, 27-37.
DOI URL |
[53] |
Williams IN, Riley WJ, Kueppers LM, Biraud SC, Torn MS (2016). Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat. Journal of Geophysical Research: Biogeosciences, 121, 1903-1915.
DOI URL |
[54] |
Xu H, Zhang ZQ, Chen JQ, Zhu MX, Kang MC (2017). Cloudiness regulates gross primary productivity of a poplar plantation under different environmental conditions. Canadian Journal of Forest Research, 47, 648-658.
DOI URL |
[55] | Yang HB, Yang DW (2012). Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, 414-415, 184-193. |
[56] |
Yang XY, Li J, Yu Q, Ma YC, Tong XJ, Feng Y, Tong YX (2019). Impacts of diffuse radiation fraction on light use efficiency and gross primary production of winter wheat in the North China Plain. Agricultural and Forest Meteorology, 275, 233-242.
DOI URL |
[57] |
Yue X, Unger N (2018). Fire air pollution reduces global terrestrial productivity. Nature Communications, 9, 5413. DOI: 10.1038/s41467-018-07921-4.
DOI PMID |
[58] | Zhang M, Yu GR, Zhang LM, Sun XM, Wen XF, Han SJ (2009). Effects of solar radiation on net ecosystem exchange of broadleaved-Korean pine mixed forest in Changbai Mountain, China. Chinese Journal of Plant Ecology, 33, 270-282. |
[张弥, 于贵瑞, 张雷明, 孙晓敏, 温学发, 韩士杰 (2009). 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响. 植物生态学报, 33, 270-282.]
DOI |
|
[59] |
Zhang M, Yu GR, Zhuang J, Gentry R, Fu YL, Sun XM, Zhang LM, Wen XF, Wang QF, Han SJ, Yan JH, Zhang YP, Wang YF, Li YN (2011). Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 151, 803-816.
DOI URL |
[60] |
Zhang ZY, Liu QZ, Ruan YC, Tan YH (2021). Estimation of aerosol radiative effects on terrestrial gross primary productivity and water use efficiency using process-based model and satellite data. Atmospheric Research, 247, 105245. DOI: 10.1016/j.atmosres.2020.105245.
DOI URL |
[61] |
Zhou H, Yue X, Lei YD, Zhang TY, Tian CG, Ma YM, Cao Y (2021). Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 244, 117905. DOI: 10.1016/j.atmosenv.2020.117905.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[4] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[7] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[8] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[9] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[13] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[14] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
[15] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19