植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1256-1269.DOI: 10.17521/cjpe.2022.0341
所属专题: 植被生态学
李娜1, 唐士明2, 郭建英3, 田茹1, 王姗1, 胡冰1, 罗永红1, 徐柱文1,4,*()
收稿日期:
2022-08-23
接受日期:
2023-03-19
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 徐柱文 ORCID:0000-0002-8898-6577 (基金资助:
LI Na1, TANG Shi-Ming2, GUO Jian-Ying3, TIAN Ru1, WANG Shan1, HU Bing1, LUO Yong-Hong1, XU Zhu-Wen1,4,*()
Received:
2022-08-23
Accepted:
2023-03-19
Online:
2023-09-20
Published:
2023-09-28
Contact:
* XU Zhu-Wen(Supported by:
摘要:
放牧是内蒙古草原的主要利用方式, 对草地植物群落具有重要影响, 然而内蒙古草原植物群落特征对放牧的综合响应模式仍不清楚。基于76项研究数据, 本研究对不同放牧强度、不同草地类型和不同放牧年限下, 内蒙古草地植物群落特征和土壤理化性质进行meta分析, 以期综合评价内蒙古草地对放牧的响应模式。结果表明: 放牧显著降低了植物地上/地下生物量、盖度、高度、密度、物种丰富度、Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson多样性指数和土壤含水量, 且负效应随放牧强度和放牧时间的增加而增强。放牧对植被稀少、环境承载力低的草地(如荒漠草原、沙地等)具有更大的负效应。该研究表明内蒙古草地植物群落特征对放牧的响应受多个因素调控, 应根据不同类型的草地制定适宜的放牧强度和放牧时间以实现草地的可持续利用。当前的放牧研究中放牧强度标准不统一, 使不同研究之间难以比较, 有些研究缺乏实验重复, 研究结果不具有统计学意义。探索放牧强度的统一量化标准将是今后放牧研究中重要且具有挑战性的问题, 同时实验设计的合理性也应受到重视。
李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析. 植物生态学报, 2023, 47(9): 1256-1269. DOI: 10.17521/cjpe.2022.0341
LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland. Chinese Journal of Plant Ecology, 2023, 47(9): 1256-1269. DOI: 10.17521/cjpe.2022.0341
图1 内蒙古草地植物生物量、盖度(Cover)、高度(Height)、密度(Density)、物种多样性和土壤理化性质对放牧的加权响应比(平均值± 95% CI)。右侧数字表示各变量的样本量。CI, 置信区间。AGB, 地上生物量; BGB, 地下生物量; D, Pielou均匀度指数; E, Simpson多样性指数; H′, Shannon-Wiener多样性指数; SD, 土壤密度; SpH, 土壤pH; SOC, 土壤有机碳含量; SR, 物种丰富度; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 1 Weighted response ratio of plant biomass, cover, height, density, species diversity, and soil physical and chemical properties to grazing in Nei Mongol grassland (mean ± 95% CI). The number on the right indicates the sample size of each variable. CI, confidence interval. AGB, above-ground biomass; BGB, below-ground biomass; D, Pielou evenness index; E, Simpson diversity index; H′, Shannon-Wiener diversity index; SD, soil density; SpH, soil pH; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content.
图2 内蒙古草地植物生物量、盖度、高度、密度、物种多样性和土壤理化性质对不同放牧强度的响应比(平均值± 95% CI)。右侧数字表示各变量的样本量。CI, 置信区间。HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。AGB, 地上生物量; BGB, 地下生物量; D, Pielou均匀度指数; E, Simpson多样性指数; H′, Shannon-Wiener多样性指数; SD, 土壤密度; SpH, 土壤pH; SOC, 土壤有机碳含量; SR, 物种丰富度; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 2 Response ratio of plant biomass, cover, height, density, species diversity, and soil physical and chemical properties to different grazing intensities in Nei Mongol grassland (mean ± 95% CI). The number on the right indicates the sample size of each variable. CI, confidence interval. HG, heavy grazing; LG, light grazing; MG, mediate grazing. AGB, above-ground biomass; BGB, below-ground biomass; D, Pielou evenness index; E, Simpson diversity index; H′, Shannon-Wiener diversity index; SD, soil density; SpH, soil pH; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soli total phosphorus content; SWC, soil water content.
图3 内蒙古不同类型草地中, 生物量、盖度、高度、密度、物种多样性和土壤理化性质对不同放牧强度的响应比(平均值± 95% CI)。右侧数字表示各变量的样本量。CI, 置信区间。HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。DG, 荒漠草原; M, 草甸草原; S, 沙地; TG, 典型草原。AGB, 地上生物量; BGB, 地下生物量; D, Pielou均匀度指数; E, Simpson多样性指数; H′, Shannon-Wiener多样性指数; SD, 土壤密度; SpH, 土壤pH; SOC, 土壤有机碳含量; SR, 物种丰富度; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 3 In different grassland types of Nei Mongol, the response ratio of biomass, cover, height, density, species diversity, and soil physical and chemical properties to different grazing intensities (mean ± 95% CI). The number on the right indicates the sample size of each variable. CI, confidence interval. HG, heavy grazing; LG, light grazing; MG, mediate grazing. DG, desert grassland; M, meadow grassland; S, sandy land; TG, typical grassland. AGB, above-ground biomass; BGB, below-ground biomass; D, Pielou evenness index; E, Simpson diversity index; H′, Shannon-Wiener diversity index; SD, soil density; SpH, soil pH; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content.
图4 不同放牧年限下, 内蒙古草地植物生物量、盖度、高度、密度、物种多样性和土壤理化性质对放牧的响应比(平均值± 95% CI)。右侧数字表示各变量的样本量。CI, 置信区间。AGB, 地上生物量; BGB, 地下生物量; D, Pielou均匀度指数; E, Simpson多样性指数; H′, Shannon-Wiener多样性指数; SD, 土壤密度; SpH, 土壤pH; SOC, 土壤有机碳含量; SR, 物种丰富度; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 4 Under different grazing years, the response ratio of plant biomass, cover, height, density, species diversity, and soil physical and chemical properties to grazing in Nei Mongol grassland (mean ± 95% CI). The number on the right indicates the sample size of each variable. CI, confidence interval. AGB, above-ground biomass; BGB, below-ground biomass; D, Pielou evenness index; E, Simpson diversity index; H′, Shannon-Wiener diversity index; SD, soil density; SpH, soil pH; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content.
表1 内蒙古草地植物群落、土壤特征响应比的Pearson相关分析结果(相关系数r)
Table 1 Pearson correlation of aboveground biomass response ratio with plant community and soil characteristic response ratios in Nei Mongol grassland (correlation cofficient r)
表2 内蒙古草地植物群落特征与环境因子的线性混合效应模型分析结果(F值)
Table 2 Results of linear mixed-effects model analysis of plant community characteristics and environmental factors in Nei Mongol grassland (F value)
[1] |
Bagchi S, Ritchie ME (2010). Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 13, 959-968.
DOI PMID |
[2] |
Bai YF, Huang JH, Zheng SX, Pan QM, Zhang LX, Zhou HK, Xu HL, Li YL, Ma J (2014). Drivers and regulating mechanisms of grassland and desert ecosystem services. Chinese Journal of Plant Ecology, 38, 93-102.
DOI URL |
[白永飞, 黄建辉, 郑淑霞, 潘庆民, 张丽霞, 周华坤, 徐海量, 李玉霖, 马健 (2014). 草地和荒漠生态系统服务功能的形成与调控机制. 植物生态学报, 38, 93-102.]
DOI |
|
[3] | Bai YF, Wang Y (2021). Focus on ecological restoration of degraded grassland: sidenotes of Inner Mongolia grassland ecosystem positioning research station of Chinese Academy of Sciences. Man and the Biosphere, (1), 16-19. |
[白永飞, 王扬 (2021). 聚焦退化草原的生态修复: 中国科学院内蒙古草原生态系统定位研究站侧记. 人与生物圈, (1), 16-19.] | |
[4] |
Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG, Wisley B (2012). Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49, 1204-1215.
DOI URL |
[5] |
Bardgett RD, Keiller S, Cook R, Gilburn AS (1998). Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biology & Biochemistry, 30, 531-539.
DOI URL |
[6] |
Bardgett RD, Wardle DA (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258-2268.
DOI URL |
[7] |
Boval M, Dixon RM (2012). The importance of grasslands for animal production and other functions: a review on management and methodological progress in the tropics. Animal, 6, 748-762.
DOI PMID |
[8] |
Briske DD, Zhao M, Han G, Xiu C, Kemp DR, Willms W, Havstad K, Kang L, Wang Z, Wu J (2015). Strategies to alleviate poverty and grassland degradation in Inner Mongolia: intensification vs production efficiency of livestock systems. Journal of Environmental Management, 152, 177-182.
DOI PMID |
[9] |
Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
DOI URL |
[10] | Chen Y, Chaoluomeng, Zhou YL, Hugejiletu, Yang CC, Liu R (2022). Effects of grazing intensity of soil carbon, nitrogen and their conversion in the temperate meadow steppe of Inner Mongolia. Chinese Journal of Grassland, 44, 24-32. |
[陈瑜, 潮洛濛, 周延林, 呼格吉勒图, 杨晨晨, 刘锐 (2022). 放牧强度对内蒙古温性草甸草原土壤碳、氮及其转化的影响. 中国草地学报, 44, 24-32.] | |
[11] |
Conant RT, Paustian K, Elliott ET (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11, 343-355.
DOI URL |
[12] |
Cruz P, Theau JP, Frizzo A, Jouany C, Duru M, Carvalho PCF (2010). Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of Brazil. Rangeland Ecology & Management, 63, 350-358.
DOI URL |
[13] |
Deng L, Shangguan ZP, Wu GL, Chang XF (2017). Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Science Reviews, 173, 84-95.
DOI URL |
[14] |
Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341.
DOI URL |
[15] |
Dong LW, Ren ZW, Zhang R, Xie CD, Zhou XL (2022). Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland. Chinese Journal of Plant Ecology, 46, 871-881.
DOI URL |
[董六文, 任正炜, 张蕊, 谢晨笛, 周小龙 (2022). 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响. 植物生态学报, 46, 871-881.]
DOI |
|
[16] |
Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50.
DOI URL |
[17] |
Guo CY, Zhao DS, Zheng D, Zhu Y (2021). Effects of grazing on the grassland vegetation community characteristics in Inner Mongolia. Journal of Resources and Ecology, 12, 319-331.
DOI |
[18] | Gurevitch J, Hedges LV (2001). Meta-analysis: combining the results of independent experiments//Scheiner SM, Gurevitch J. Design and Analysis of Ecological Experiments. Oxford University Press, New York, USA. 347-369. |
[19] | Hai L, Wang SF, Yu ZG, Wang XJ (2016). Influence of grazing on plant community characteristics in typical mountainous area in Wulashan, Inner Mongolia. Journal of Inner Mongolia Forestry Science and Technology, 42(4), 15-20. |
[海龙, 王淑芳, 于志刚, 王晓江 (2016). 放牧对内蒙古乌拉山典型山地植物群落学特征的影响. 内蒙古林业科技, 42(4), 15-20.] | |
[20] | Hao YQ, He ZW (2019). Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS ONE, 14, e0215223. DOI: 10.1371/ journal.pone.0215223. |
[21] |
He M, Zhou GY, Yuan TF, van Groenigen KJ, Shao JJ, Zhou XH (2020). Grazing intensity significantly changes the C:N:P stoichiometry in grassland ecosystems. Global Ecology and Biogeography, 29, 355-369.
DOI URL |
[22] |
Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
DOI URL |
[23] |
Herrero-Jáuregui C, Oesterheld M (2018). Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos, 127, 757-766.
DOI URL |
[24] |
Hu ZM, Li SG, Guo Q, Niu SL, He NP, Li LH, Yu GR (2016). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22, 1385-1393.
DOI PMID |
[25] | Inner Mongolia Autonomous Region Bureau of Statistics (2004). Inner Mongolia Autonomous Region 2003 national economic and social development statistics bulletin. Inner Mongolia Statistics, (1), 10-13. |
[内蒙古自治区统计局 (2004). 内蒙古自治区2003年国民经济和社会发展统计公报. 内蒙古统计, (1), 10-13.] | |
[26] | Inner Mongolia Autonomous Region Bureau of Statistics (2022). Inner Mongolia Autonomous Region 2021 national economic and social development statistics bulletin. Inner Mongolia Daily (Han), (3), 1-16. |
[内蒙古自治区统计局 (2022). 内蒙古自治区2021年国民经济和社会发展统计公报. 内蒙古日报(汉), (3), 1-16.] | |
[27] | Jin J, Wang ZY, Zhu GD, Yao HY, Na N, Hou WF, Yu ZM, Wang CJ (2017). Soil nitrogen and Stipa krylovii roots in desert steppe in response to different grazing treatments. Chinese Journal of Ecology, 36, 72-79. |
[金净, 王占义, 朱国栋, 姚鸿云, 娜娜, 候伟峰, 于泽民, 王成杰 (2017). 荒漠草原土壤氮素和克氏针茅根系对不同放牧处理的响应. 生态学杂志, 36, 72-79.] | |
[28] |
Kang L, Han XG, Zhang ZB, Sun OJ (2007). Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 997-1008.
DOI URL |
[29] |
Kooijman AM, Smit A (2001). Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecological Engineering, 17, 63-77.
DOI URL |
[30] | Li FY, Jäschke Y, Guo K, Wesche K (2020). Grasslands of China//Goldstein M, DellaSala D. Encyclopedia of the World’s Biomes: Vol. 3. Elsevier. 773-784. http://doi.org/10.1016/B978-0-12-409548-9.12120-7. |
[31] |
Li WH, Zheng SX, Bai YF (2014). Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 38, 178-187.
DOI URL |
[李文怀, 郑淑霞, 白永飞 (2014). 放牧强度和地形对内蒙古典型草原物种多度分布的影响. 植物生态学报, 38, 178-187.]
DOI |
|
[32] | Li WL, Liu CL, Wang WY, Zhou HK, Xue YT, Xu J, Xue PF, Yan HP (2021). Effects of different grazing disturbances on the plant diversity and ecological functions of alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Frontiers in Plant Science, 12, 765070. DOI: 10.3389/fpls.2021.765070. |
[33] |
Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451.
DOI URL |
[李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.]
DOI |
|
[34] | Li YH, Wang SP (1999). Response of plant and plant community to different stocking rates. Grassland of China, (3), 11-19. |
[李永宏, 汪诗平 (1999). 放牧对草原植物的影响. 中国草地, (3), 11-19.] | |
[35] | Li YL (2019). Effects of Grazing Animal Type and Intensity on the Typical Steppe Ecosystem in Inner Mongolia— Preliminary Results from an Experimental Research. Master degree dissertation, Inner Mongolia University, Hohhot. |
[李艳龙 (2019). 不同放牧家畜种类和强度对内蒙古典型草原生态系统影响的初步研究. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[36] | Liu LL, Wu ZL, Li Q (2006). A study on below-ground biomass and net primary production of sub-alpine meadow in Northwest Yunnan Province. Journal of Yunnan University, 28(S1), 314-318. |
[刘玲玲, 吴兆录, 李青 (2006). 滇西北亚高山草地的地下生物量及净初级生产力研究. 云南大学学报(自然科学版), 28(S1), 314-318.] | |
[37] | Liu N, Bai KY, Yang YH, Zhang RY, Han GD (2018). Effect of grazing on vegetation and soil nutrients of a desert steppe in Inner Mongolia. Pratacultural Science, 35, 1323-1331. |
[刘娜, 白可喻, 杨云卉, 张睿洋, 韩国栋 (2018). 放牧对内蒙古荒漠草原草地植被及土壤养分的影响. 草业科学, 35, 1323-1331.] | |
[38] |
Liu YY, Wang Q, Zhang ZY, Tong LJ, Wang ZQ, Li JL (2019). Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690, 27-39.
DOI URL |
[39] |
Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Zhou G, Zou X, Bai E, Scanlon TM, Hou E, Mo J (2018). Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 115, 5187-5192.
DOI PMID |
[40] | Ma X, Zhu B, Nie Y, Liu Y, Kuzyakov Y (2021). Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: a meta-analysis. Soil Biology & Biochemistry, 163, 108418. DOI: 10.1016/j.soilbio.2021.108418. |
[41] |
McNaughton SJ (1976). Serengeti migratory wildebeest facilitation of energy flow by grazing. Science, 191, 92-94.
PMID |
[42] |
Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
DOI URL |
[43] | Nie C, Li Y, Niu L, Liu YH, Shao R, Xu X, Tian YQ (2019). Soil respiration and its Q10 response to various grazing systems of a typical steppe in Inner Mongolia, China. PeerJ, 7, e7112. DOI: 10.7717/peerj.7112. |
[44] |
Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
DOI PMID |
[45] |
Ren H, Han G, Ohm M, Schönbach P, Gierus M, Taube F (2015). Do sheep grazing patterns affect ecosystem functioning in steppe grassland ecosystems in Inner Mongolia? Agriculture Ecosystems & Environment, 213, 1-10.
DOI URL |
[46] | Ren HY, Schöenbach P, Wan HW, Gierus M, Taube F (2012). Effects of grazing intensity and environmental factors on species composition and diversity in typical steppe of Inner Mongolia, China. PLoS ONE, 7, e52180. DOI: 10.1371/journal.pone.0052180. |
[47] | Ren HY, Zheng SX, Bai YF (2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 33, 1065-1074. |
[任海彦, 郑淑霞, 白永飞 (2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 33, 1065-1074.]
DOI |
|
[48] |
Scurlock JMO, Hall DO (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4, 229-233.
DOI URL |
[49] | Song LY, Pan Y, Gong JR, Li XB, Liu M, Yang B, Zhang ZH, Baoyin T (2020). Physiology of Leymus chinensis under seasonal grazing: implications for the development of sustainable grazing in a temperate grassland of Inner Mongolia. Journal of Environmental Management, 271, 110984. DOI: 10.1016/j.jenvman.2020.110984. |
[50] |
Su RN, Cheng JH, Chen DM, Bai YF, Jin H, Chao L, Wang ZJ, Li JQ (2017). Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China. Scientific Reports, 7, 40. DOI: 10.1038/s41598-017-00105-y.
PMID |
[51] | Su RN (2018). The Effects of Grazing on the Community Structure and Productivity of Inner Mongolia Grassland. PhD dissertation, Beijing Forestry University, Beijing. |
[苏日娜 (2018). 放牧对内蒙古草原群落结构和生产力的影响. 博士学位论文, 北京林业大学, 北京.] | |
[52] |
Tang SM, Guo JX, Li SC, Li JH, Xie S, Zhai XJ, Wang CJ, Zhang YJ, Wang K (2019). Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil and Tillage Research, 185, 29-35.
DOI URL |
[53] |
Tang YK, Wu YT, Wu K, Guo ZW, Liang CZ, Wang MJ, Chang PJ (2019). Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities. Chinese Journal of Plant Ecology, 43, 408-417.
DOI URL |
[汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静 (2019). 放牧对草地生态系统服务和功能权衡关系的影响. 植物生态学报, 43, 408-417.]
DOI |
|
[54] |
Tian J, Dungait JAJ, Lu X, Yang Y, Hartley IP, Zhang W, Mo J, Yu G, Zhou J, Kuzyakov Y (2019). Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 25, 3267-3281.
DOI PMID |
[55] |
Wang HY, Dong Z, Guo JY, Li HL, Li JR, Han GD, Chen XC (2017a). Effects of grazing intensity on organic carbon stock characteristics in Stipa breviflora desert steppe vegetation soil systems. The Rangeland Journal, 39, 169-177.
DOI URL |
[56] |
Wang J, Zhang RQ, Biyasi A, Liu WT, Gao TM, Yue ZW, Liu H, Ge N (2020). Grazing reduces biomass fluctuations of rangeland plants: an 11-year comparison of grazing vs. enclosure. Applied Ecology and Environmental Research, 18, 6309-6320.
DOI URL |
[57] |
Wang J, Zhao ML, Willms WD, Han GD, Wang ZW, Bai YF (2011). Can plant litter affect net primary production of a typical steppe in Inner Mongolia? Journal of Vegetation Science, 22, 367-376.
DOI PMID |
[58] |
Wang L, Luan LM, Hou FJ, Siddique KHM (2020). Nexus of grazing management with plant and soil properties in northern China grasslands. Scientific Data, 7, 39. DOI: 10.1038/s41597-020-0375-0.
PMID |
[59] | Wang MJ, Han GD, Cui GW, Zhao ML (2010). Effects of grazing intensity on the biodiversity and productivity of meadow steppe. Chinese Journal of Ecology, 29, 862-868. |
[王明君, 韩国栋, 崔国文, 赵萌莉 (2010). 放牧强度对草甸草原生产力和多样性的影响. 生态学杂志, 29, 862-868.] | |
[60] |
Wang TW, Zhang Z, Li ZB, Li P (2017b). Grazing management affects plant diversity and soil properties in a temperate steppe in northern China. Catena, 158, 141-147.
DOI URL |
[61] | Wang X (2021). Present situation, existing problems and countermeasures of Inner Mongolia grassland ecological environment. Inner Mongolia Statistics, (5), 10-11. |
[王鑫 (2021). 内蒙古草原生态环境现状、存在的问题及对策. 内蒙古统计, (5), 10-11.] | |
[62] |
Wang YC, Chu L, Daryanto S, Wang LX, Lin JX, Ala MS (2018). The impact of grazing on seedling patterns in degraded sparse-elm grassland. Land Degradation & Development, 29, 2330-2337.
DOI URL |
[63] |
Wang YY, Pei WW, Cao GM, Guo XW, Du YG (2022). Response characteristics of grassland ecosystem biomass to grazing intensity in China. Grassland Science, 68, 193-201.
DOI URL |
[64] |
Yan L, Li Y, Wang L, Zhang XD, Wang JZ, Wu HD, Yan ZQ, Zhang KR, Kang XM (2020). Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: a hierarchical meta- analysis. Land Degradation & Development, 31, 2369-2378.
DOI URL |
[65] | Yan L, Zhou GS, Zhang F (2013). Effects of different grazing intensities on grassland production in China: a meta- analysis. PLoS ONE, 8, e81466. DOI: 10.1371/journal.pone.0081466. |
[66] | Yu R, Zhang W, Yu Y, Yu S, Lambers H, Li L (2020). Linking shifts in species composition induced by grazing with root traits for phosphorus acquisition in a typical steppe in Inner Mongolia. Science of the Total Environment, 712, 136495. DOI: 10.1016/j.scitotenv.2020.136495. |
[67] | Zainelabdeen YM, Yan RR, Xin XP, Yan YC, Ahmed AI, Hou LL, Zhang Y (2020). The impact of grazing on the grass composition in temperate grassland. Agronomy, 10, 1230. DOI: 10.3390/agronomy10091230. |
[68] |
Zhao Y, Peth S, Krümmelbein J, Horn R, Wang ZY, Steffens M, Hoffmann C, Peng XH (2007). Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling, 205, 241-254.
DOI URL |
[69] |
Zheng MM, Song J, Ru JY, Zhou ZX, Zhong MX, Jiang L, Hui DF, Wan SQ (2021). Effects of grazing, wind erosion, and dust deposition on plant community composition and structure in a temperate steppe. Ecosystems, 24, 403-420.
DOI |
[70] |
Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Chang Biology, 23, 1167-1179.
DOI URL |
[71] |
Zhou W, Gang CC, Zhou L, Chen YZ, Li JL, Ju WM (2014). Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica, 55, 86-96.
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[7] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[11] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[12] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[13] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[14] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[15] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19