植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1270-1277.DOI: 10.17521/cjpe.2022.0255
所属专题: 植物功能性状
收稿日期:
2022-06-16
接受日期:
2022-10-11
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 郭垚鑫 ORCID:0000-0002-2717-7653 (基金资助:
YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin*(), YUE Ming
Received:
2022-06-16
Accepted:
2022-10-11
Online:
2023-09-20
Published:
2023-09-28
Contact:
* GUO Yao-Xin(Supported by:
摘要:
局域群落共存树种功能性状的比较是分析不同树种生态策略差异的有效手段, 对于理解森林群落物种共存机制及指导森林植被恢复至关重要。该研究以秦岭中低山地带性植被锐齿槲栎(Quercus aliena var. acuteserrata)林为研究对象, 分析了群落内5个共存树种叶、茎和细根功能性状及其组合的差异。结果表明: 不同树种在地上和地下功能性状上存在明显的差异, 尤其在叶片资源获取和防御策略上存在明显的分异。其中, 青榨槭(Acer davidii)偏向于快速资源获取一端, 而千金榆(Carpinus cordata)偏向于慢速资源获取一端; 三桠乌药(Lindera obtusiloba)偏向于高抵抗和防御能力一端, 而四照花(Cornus kousa subsp. chinensis)偏向于低抵抗和防御能力一端; 优势种锐齿槲栎在2种策略梯度上都表现为中间型策略。锐齿槲栎林共存树种功能性状及其组合上的差异反映了其生态策略和生态位的不同, 这可能是驱动其稳定共存的重要机制。
袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异. 植物生态学报, 2023, 47(9): 1270-1277. DOI: 10.17521/cjpe.2022.0255
YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest. Chinese Journal of Plant Ecology, 2023, 47(9): 1270-1277. DOI: 10.17521/cjpe.2022.0255
器官 Organ | 功能性状 Functional trait | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|
叶 Leaf | 叶厚度 Leaf thickness | LT | mm |
叶面积 Leaf area | LA | cm2 | |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | |
比叶质量 Leaf mass per unit area | LMA | g·cm-2 | |
叶氮含量 Leaf nitrogen content | LNC | mg·g-1 | |
叶碳含量 Leaf carbon content | LCC | mg·g-1 | |
叶碳氮比 Leaf carbon nitrogen ratio | Leaf C:N | ||
茎 Stem | 木质密度 Wood density | WD | g·cm-3 |
细根 Fine root | 比根长 Specific root length | SRL | cm·g-1 |
根氮含量 Root nitrogen content | RNC | mg·g-1 | |
根碳含量 Root carbon content | RCC | mg·g-1 | |
根碳氮比 Root carbon nitrogen ratio | Root C:N |
表1 本研究中所测量的功能性状
Table 1 Functional traits measured in this study
器官 Organ | 功能性状 Functional trait | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|
叶 Leaf | 叶厚度 Leaf thickness | LT | mm |
叶面积 Leaf area | LA | cm2 | |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | |
比叶质量 Leaf mass per unit area | LMA | g·cm-2 | |
叶氮含量 Leaf nitrogen content | LNC | mg·g-1 | |
叶碳含量 Leaf carbon content | LCC | mg·g-1 | |
叶碳氮比 Leaf carbon nitrogen ratio | Leaf C:N | ||
茎 Stem | 木质密度 Wood density | WD | g·cm-3 |
细根 Fine root | 比根长 Specific root length | SRL | cm·g-1 |
根氮含量 Root nitrogen content | RNC | mg·g-1 | |
根碳含量 Root carbon content | RCC | mg·g-1 | |
根碳氮比 Root carbon nitrogen ratio | Root C:N |
图1 锐齿槲栎林不同树种各功能性状的差异。不同小写字母代表差异显著(p < 0.05)。功能性状缩写同表1。
Fig. 1 Differential functional traits of tree species in the Quercus aliena var. acuteserrata forest. Different lowercase letters indicate significant difference (p < 0.05). Abbreviations of functional traits see Table 1.
功能性状 Functional trait | PCA1 | PCA2 | PCA3 |
---|---|---|---|
LT | -0.17 | -0.17 | 0.33 |
LA | -0.03 | 0.29 | 0.39 |
LDMC | 0.25 | 0.41 | 0.22 |
LMA | 0.06 | 0.04 | 0.11 |
LNC | -0.44 | -0.08 | 0.18 |
LCC | 0.16 | 0.52 | 0.07 |
Leaf C:N | 0.44 | 0.25 | -0.20 |
WD | 0.30 | -0.16 | 0.42 |
SRL | 0.08 | -0.23 | -0.25 |
RNC | -0.45 | 0.22 | 0.05 |
RCC | 0.11 | -0.38 | 0.40 |
Root C:N | 0.41 | -0.34 | 0.08 |
方差贡献率 Variance contribution (%) | 32.45 | 19.30 | 13.25 |
表2 锐齿槲栎林不同树种功能性状的主成分分析(PCA)
Table 2 Principal component analysis (PCA) of measured traits for different tree species in the Quercus aliena var. acuteserrata forest
功能性状 Functional trait | PCA1 | PCA2 | PCA3 |
---|---|---|---|
LT | -0.17 | -0.17 | 0.33 |
LA | -0.03 | 0.29 | 0.39 |
LDMC | 0.25 | 0.41 | 0.22 |
LMA | 0.06 | 0.04 | 0.11 |
LNC | -0.44 | -0.08 | 0.18 |
LCC | 0.16 | 0.52 | 0.07 |
Leaf C:N | 0.44 | 0.25 | -0.20 |
WD | 0.30 | -0.16 | 0.42 |
SRL | 0.08 | -0.23 | -0.25 |
RNC | -0.45 | 0.22 | 0.05 |
RCC | 0.11 | -0.38 | 0.40 |
Root C:N | 0.41 | -0.34 | 0.08 |
方差贡献率 Variance contribution (%) | 32.45 | 19.30 | 13.25 |
图2 锐齿槲栎林不同树种在主成分分析(PCA)前两轴定义的性状空间中的分布。功能性状缩写同表1。
Fig. 2 Distribution of the different tree species in the traits space defined by the first two axes of principal components analysis (PCA) in the Quercus aliena var. acuteserrata forest. Abbreviations of functional traits see Table 1.
图3 锐齿槲栎林不同树种在主成分分析(PCA)前两轴得分上的差异。不同小写字母代表差异显著(p < 0.05)。
Fig. 3 Differences in scores between different tree species in the first two axes of principal components analysis (PCA) in the Quercus aliena var. acuteserrata forest. Different lowercase letters indicate significance difference among them (p < 0.05).
[1] |
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013). Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306.
DOI PMID |
[2] | Chai YF, Yue M (2016). Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572. |
[柴永福, 岳明 (2016). 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.] | |
[3] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[4] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[5] |
Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] |
de Smedt P, Ottaviani G, Wardell-Johnson G, Sýkora KV, Mucina L (2018). Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobotanica, 53, 133-145.
DOI |
[8] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[9] |
Ehrlich E, Becks L, Gaedke U (2017). Trait-fitness relationships determine how trade-off shapes affect species coexistence. Ecology, 98, 3188-3198.
DOI PMID |
[10] |
Ellis AR, Hubbell SP, Potvin C (2000). In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis. Canadian Journal of Botany, 78, 1336-1347.
DOI URL |
[11] |
Fajardo A, Siefert A (2016). Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA). Annals of Botany, 118, 1307-1315.
PMID |
[12] | Guo YX, Zhao P, Zhou Z, Yi JJ, Chai YF, Yue M (2020). Coexistence of three common species in a temperate mixed forest: linking seedling microhabitats and functional traits. Forest Ecology and Management, 465, 118057. DOI: 10.1016/j.foreco.2020.118057. |
[13] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[14] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[15] |
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution and Systematics, 43, 227-248.
DOI URL |
[16] |
Julieta BM, Ana M, González DP, Lombera R, Susana G, Estrada A (2014). Seed source, seed traits, and frugivore habits: implications for dispersal quality of two sympatric primates. American Journal of Botany, 101, 970-978.
DOI URL |
[17] |
Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
DOI PMID |
[18] |
Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI PMID |
[19] |
Laughlin DC, Lusk CH, Bellingham PJ, Burslem DFRP, Simpson AH, Kramer-Walter KR (2017). Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 7, 8936-8949.
DOI PMID |
[20] |
Lin B, Liu Q (2008). Plasticity responses of 4 tree species in subalpine-coniferous-forest to different light regimes. Acta Ecologica Sinica, 28, 4665-4675.
DOI URL |
[林波, 刘庆 (2008). 四种亚高山针叶林树种的表型可塑性对不同光照强度的响应. 生态学报, 28, 4665-4675.] | |
[21] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica, 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[22] |
Lusk CH, Laughlin DC (2017). Regeneration patterns, environmental filtering and tree species coexistence in a temperate forest. New Phytologist, 213, 657-668.
DOI PMID |
[23] | Muledi J, Bauman D, Jacobs A, Meerts P, Shutcha M, Drouet T (2020). Tree growth, recruitment, and survival in a tropical dry woodland: the importance of soil and functional identity of the neighbourhood. Forest Ecology and Management, 460, 117894. DOI: 10.1016/j.foreco.2020.117894. |
[24] | Niu XD, Sun PS, Liu XJ, Luan JW, Liu SR (2020). Net ecosystem carbon dioxide exchange in an oak (Quercus aliena) forest at transitional zone from subtropics to warm temperate, China. Acta Ecologica Sinica, 40, 5980-5991. |
[牛晓栋, 孙鹏森, 刘晓静, 栾军伟, 刘世荣 (2020). 中国亚热带-暖温带过渡区锐齿栎林净生态系统碳交换特征. 生态学报, 40, 5980-5991.] | |
[25] | Pang RR, Peng JY, Yan Y (2021). Factors influencing aboveground biomass in the secondary forest of Quercus aliena var. acutiserrata in Taibai Mountain. Scientia Silvae Sinicae, 57(10), 157-165. |
[庞荣荣, 彭潔莹, 闫琰 (2021). 太白山次生锐齿栎林地上生物量影响因素. 林业科学, 57(10), 157-165.] | |
[26] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2016). Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715-716.
DOI URL |
[27] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI PMID |
[28] | Ren XM, Zhu Y, Chen ZJ, Ding CY, Li YY, Yang GH (2019). Regeneration of arbor trees and its contributing factors in an oak forest in Taibai Mountain, China. Scientia Silvae Sinicae, 55(1), 11-21. |
[任学敏, 朱雅, 陈兆进, 丁传雨, 李玉英, 杨改河 (2019). 太白山锐齿槲栎林乔木更新特征及其影响因子. 林业科学, 55(1), 11-21.] | |
[29] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611.
DOI URL |
[30] | Sun P, Wei X, Ye WH, Shen H (2022). Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest. Guihaia, 42, 510-519. |
[孙鹏, 韦霄, 叶万辉, 沈浩 (2022). 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异. 广西植物, 42, 510-519.] | |
[31] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytologist, 199, 322-323.
DOI PMID |
[32] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[33] | Yu W, Song WC, Guo YC, Zhang HF, Yan Y, Zhang SX (2021). Species-abundance distribution patterns of Quercus aliena var. acutiserrata forest in Taibai Mountain, China. Chinese Journal of Applied Ecology, 32, 1717-1725. |
[尉文, 宋文超, 郭毅春, 张厚发, 闫琰, 张硕新 (2021). 太白山锐齿栎林物种-多度分布格局. 应用生态学报, 32, 1717-1725.]
DOI |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[7] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[10] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[11] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[12] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[13] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[14] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[15] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19