植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 502-512.DOI: 10.17521/cjpe.2024.0178 cstr: 32100.14.cjpe.2024.0178
• 研究论文 • 上一篇
葛小彩1, 李锦隆1, 孙俊2,3, 武盼盼1, 胡丹丹1,2,*(), 程栋梁1,2, 钟全林1,2
收稿日期:
2024-05-28
接受日期:
2024-10-09
出版日期:
2025-03-20
发布日期:
2024-10-11
通讯作者:
* 胡丹丹(hudanworld@126.com)基金资助:
GE Xiao-Cai1, LI Jing-Long1, SUN Jun2,3, WU Pan-Pan1, HU Dan-Dan1,2,*(), CHENG Dong-Liang1,2, ZHONG Quan-Lin1,2
Received:
2024-05-28
Accepted:
2024-10-09
Online:
2025-03-20
Published:
2024-10-11
Contact:
* HU Dan-Dan(hudanworld@126.com)Supported by:
摘要: 武夷山亚高山草甸是亚热带中国东南部地区分布海拔最高的草甸, 分析亚热带亚高山草甸土壤碳通量组分的变化特征, 探究其与环境因子的关系及温度敏感性(Q10), 对准确估计区域土壤碳收支和完善对亚高山草甸碳通量的认识具有重要意义。于2020年5月至2021年4月采用LI-8100 CO2通量测定仪对武夷山山顶草甸土壤呼吸速率(RS)进行监测, 并利用根去除法区分自养呼吸速率(RA)和异养呼吸速率(RH)。结果显示: (1)亚热带武夷山亚高山草甸土壤呼吸速率及组分动态均呈双峰曲线, 5-10月, RS、RA、RH均高于其他月份。全年RA的变异幅度大于RH, RA在RS中占比约45%。(2)多模型比较分析表明武夷山亚高山草甸土壤温度(T)与土壤呼吸速率及组分呈指数增长关系, 土壤呼吸速率及各组分的Q10排序为RA (Q10 = 1.96) > RS (Q10 = 1.94) > RH (Q10 = 1.67)。土壤湿度(W)对RS有一定影响, 但与RA、RH关系不显著。T、W双因素模型对RS的拟合优于单因素模型, 二者可共同解释48%的RS变异。综上, 武夷山亚高山草甸土壤呼吸以异养呼吸为主, 自养呼吸比异养呼吸对温度更敏感, 土壤温度和湿度是影响武夷山亚高山草甸土壤呼吸的重要环境因子, 低温和湿度大对土壤呼吸有抑制作用。该研究有助于增强对亚高山草甸土壤呼吸及组分季节动态和影响因素的认识, 为区域土壤碳通量和碳循环研究提供数据支持。
葛小彩, 李锦隆, 孙俊, 武盼盼, 胡丹丹, 程栋梁, 钟全林. 武夷山亚高山草甸土壤呼吸组分特征及影响因素. 植物生态学报, 2025, 49(3): 502-512. DOI: 10.17521/cjpe.2024.0178
GE Xiao-Cai, LI Jing-Long, SUN Jun, WU Pan-Pan, HU Dan-Dan, CHENG Dong-Liang, ZHONG Quan-Lin. Characteristics of soil respiration components and influencing factors in the subalpine meadows of Wuyi Mountain. Chinese Journal of Plant Ecology, 2025, 49(3): 502-512. DOI: 10.17521/cjpe.2024.0178
图1 武夷山海拔2 100 m处土壤呼吸动态变化(平均值±标准误, n = 5)。RA, 自养呼吸速率; RH, 异养呼吸速率; RS, 土壤呼吸速率。
Fig. 1 Dynamics of soil respiration rates at an altitude of 2 100 m in Wuyi Mountain (mean ± SE, n = 5). RA, autotrophic respiration rate; RH, heterotrophic respiration rate; RS, soil respiration rate.
图2 武夷山海拔2 100 m处土壤温度、土壤湿度和降水量月动态。P, 降水量; T, 10 cm土壤温度; W, 10 cm土壤湿度。
Fig. 2 Monthly dynamics of soil temperature, soil moisture and precipitation at an altitude of 2 100 m in Wuyi Mountain. P, precipitation; T, soil temperature measured at depth of 10 cm in the soil layer; W, soil moisture measured at depth of 10 cm in the soil layer.
图3 土壤呼吸组分和土壤温度的指数拟合。RA, 自养呼吸速率; RH, 异养呼吸速率; RS, 土壤呼吸速率。
Fig. 3 Exponential fitting of soil respiration components to soil temperature. RA, autotrophic respiration rate; RH, heterotrophic respiration rate; RS, soil respiration rate.
T | R | a | b | R | p | ||||
RS | 0.07 ± 0.01 | 0.55 ± 017 | 0.33 | <0.001 | |||||
RH | 0.05 ± 0.01 | 0.23 ± 0.13 | 0.29 | <0.001 | |||||
RA | 0.03 ± 0.01 | 0.22 ± 0.10 | 0.19 | <0.001 | |||||
T | R | a | b | R | p | ||||
RS | 0.02 ± 0.02 | 1.34 ± 0.25 | 0.38 | <0.001 | |||||
RH | 0.01 ± 0.01 | 1.45 ± 0.33 | 0.30 | <0.001 | |||||
RA | 0.01 ± 0.01 | 1.29 ± 0.37 | 0.20 | <0.001 | |||||
T | R | a | b | c | R | p | |||
RS | -0.07 ± 0.06 | 0.007 ± 0.003 | 1.16 ± 0.31 | 0.38 | <0.001 | ||||
RH | -0.03 ± 0.05 | 0.004 ± 0.002 | 0.59 ± 0.25 | 0.31 | <0.01 | ||||
RA | -0.06 ± 0.04 | 0.004 ± 0.002 | 0.60 ± 0.18 | 0.27 | <0.001 | ||||
T | R | a | b | R | p | Q10 | |||
RS | 0.62 ± 0.10 | 0.08 ± 0.01 | 0.41 | <0.001 | 1.94 | ||||
RH | 0.34 ± 0.08 | 0.07 ± 0.02 | 0.31 | <0.001 | 1.67 | ||||
RA | 0.25 ± 0.06 | 0.06 ± 0.02 | 0.22 | <0.001 | 1.96 |
表1 土壤呼吸组分与10 cm土壤温度的拟合关系(平均值±标准误, n = 5)
Table 1 Fitting relationships between soil respiration components and soil temperature at depth of 10 cm (mean ± SE, n = 5)
T | R | a | b | R | p | ||||
RS | 0.07 ± 0.01 | 0.55 ± 017 | 0.33 | <0.001 | |||||
RH | 0.05 ± 0.01 | 0.23 ± 0.13 | 0.29 | <0.001 | |||||
RA | 0.03 ± 0.01 | 0.22 ± 0.10 | 0.19 | <0.001 | |||||
T | R | a | b | R | p | ||||
RS | 0.02 ± 0.02 | 1.34 ± 0.25 | 0.38 | <0.001 | |||||
RH | 0.01 ± 0.01 | 1.45 ± 0.33 | 0.30 | <0.001 | |||||
RA | 0.01 ± 0.01 | 1.29 ± 0.37 | 0.20 | <0.001 | |||||
T | R | a | b | c | R | p | |||
RS | -0.07 ± 0.06 | 0.007 ± 0.003 | 1.16 ± 0.31 | 0.38 | <0.001 | ||||
RH | -0.03 ± 0.05 | 0.004 ± 0.002 | 0.59 ± 0.25 | 0.31 | <0.01 | ||||
RA | -0.06 ± 0.04 | 0.004 ± 0.002 | 0.60 ± 0.18 | 0.27 | <0.001 | ||||
T | R | a | b | R | p | Q10 | |||
RS | 0.62 ± 0.10 | 0.08 ± 0.01 | 0.41 | <0.001 | 1.94 | ||||
RH | 0.34 ± 0.08 | 0.07 ± 0.02 | 0.31 | <0.001 | 1.67 | ||||
RA | 0.25 ± 0.06 | 0.06 ± 0.02 | 0.22 | <0.001 | 1.96 |
W | R | a | b | c | R | p |
RS | 20.70 ± 7.03 | -31.28 ± 10.59 | -1.78 ± 1.12 | 0.14 | <0.05 | |
RH | 12.06 ± 5.82 | -17.90 ± 8.72 | -1.07 ± 0.92 | 0.05 | >0.05 | |
RA | 6.83 ± 3.94 | -10.74 ± 5.92 | -0.42 ± 0.62 | 0.04 | >0.05 | |
T, W | R | a | b | c | R | p |
RS | 0.04 ± 0.12 | 0.07 ± 0.01 | -0.36 ± 0.18 | 0.48 | <0.001 |
表2 土壤总呼吸速率(RS)、自养呼吸速率(RA)、异养呼吸速率(RH)与10 cm土壤湿度(W)、土壤温度(T)和土壤湿度双因素的拟合关系(平均值±标准误, n = 5)
Table 2 Fitting relationships of soil respiration rate (RS), autotrophic respiration rate (RA), and heterotrophic respiration rate (RH) with soil moisture (W) and the dual factors of soil temperature and soil moisture at depth of 10 cm (mean ± SE, n = 5)
W | R | a | b | c | R | p |
RS | 20.70 ± 7.03 | -31.28 ± 10.59 | -1.78 ± 1.12 | 0.14 | <0.05 | |
RH | 12.06 ± 5.82 | -17.90 ± 8.72 | -1.07 ± 0.92 | 0.05 | >0.05 | |
RA | 6.83 ± 3.94 | -10.74 ± 5.92 | -0.42 ± 0.62 | 0.04 | >0.05 | |
T, W | R | a | b | c | R | p |
RS | 0.04 ± 0.12 | 0.07 ± 0.01 | -0.36 ± 0.18 | 0.48 | <0.001 |
[1] | An DS, Xu DD, Pu YH, Wang HB, Liu YQ, Zhu JQ (2021). Responses of subalpine meadow to climatic factors and the time lag effects in Wuyi Mountains from 2000 to 2019. Chinese Journal of Applied Ecology, 32, 4195-4202. |
[安德帅, 徐丹丹, 濮毅涵, 王浩斌, 刘艳清, 朱建琴 (2021). 2000-2019年武夷山亚高山草甸对气候因子的响应及其时滞效应. 应用生态学报, 32, 4195-4202.]
DOI |
|
[2] | Bao F, Zhou GS, Wang FY, Sui XH (2010). Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method. Soil Biology & Biochemistry, 42, 2339-2341. |
[3] | Bertora C, Zavattaro L, Sacco D, Monaco S, Grignani C (2009). Soil organic matter dynamics and losses in manured maize-based forage systems. European Journal of Agronomy, 30, 177-186. |
[4] | Buyanovsky GA, Wagner GH (1995). Soil respiration and carbon dynamics in parallel native and cultivated ecosystems//Lal R, Kimble J, Levine E, Stewart BA. Soils and Global Change. CRC Press, Boca Raton, USA. 209-217. |
[5] |
Carey JC, Tang JW, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang LF, Machmuller MB, Mohan J, Panetta AM, Reich PB, et al.(2016). Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 13797-13802.
DOI PMID |
[6] | Chen DF, Yu M, González G, Zou XM, Gao Q (2017a). Climate impacts on soil carbon processes along an elevation gradient in the tropical Luquillo experimental forest. Forests, 8, 90. DOI:10.3390/f8030090. |
[7] | Chen ST, Zou JW, Hu ZH, Chen HS, Lu YY (2014). Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agricultural and Forest Meteorology, 198, 335-346. |
[8] | Chen YJ, Fang K, Qin SQ, Guo YJ, Yang YH (2023). Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China. Chinese Journal of Plant Ecology, 47, 1245-1255. |
[陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合 (2023). 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素. 植物生态学报, 47, 1245-1255.]
DOI |
|
[9] |
Chen Z, Yu GR, Wang QF (2019). Magnitude, pattern and controls of carbon flux and carbon use efficiency in China’s typical forests. Global and Planetary Change, 172, 464-473.
DOI |
[10] | Chen ZM, Xu YH, Fan JL, Yu HY, Ding WX (2017b). Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biology & Biochemistry, 110, 103-115. |
[11] | Davidson ECA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[12] | Du Y, Wang YP, Hui DF, Su FL, Yan JH (2023). Significant effects of precipitation frequency on soil respiration and its components—A global synthesis. Global Change Biology, 29, 1188-1205. |
[13] | Geng Y, Wang YH, Yang K, Wang SP, Zeng H, Baumann F, Kuehn P, Scholten T, He JS (2012). Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS ONE, 7, e34968. DOI: 10.1371/journal.pone.0034968. |
[14] | Gupta SR, Singh JS (1981). Soil respiration in a tropical grassland. Soil Biology & Biochemistry, 13, 261-268. |
[15] | Han GX, Luo YQ, Li DJ, Xia JY, Xing QH, Yu JB (2014). Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland. Soil Biology & Biochemistry, 68, 85-94. |
[16] | Han MG, Jin GZ (2018). Seasonal variations of Q10 soil respiration and its components in the temperate forest ecosystems, Northeastern China. European Journal of Soil Biology, 85, 36-42. |
[17] | Hanson PJ, Edwards NT, Ga CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. DOI:10.1023/A:1006244819642. |
[18] |
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA (2013). Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199, 339-351.
DOI PMID |
[19] | Hu QW, Wu Q, Yao B, Xu XL (2015). Ecosystem respiration and its components from a Carex meadow of Poyang Lake during the drawdown period. Atmospheric Environment, 100, 124-132. |
[20] | Huang X, Li WH, Chen YN, Ma JX (2007). Soil respiration of desert riparian forests in the lower reaches of Tarim River as affected by air temperature at 10 cm above the ground surface and soil water. Acta Ecologica Sinica, 27, 1951-1959. |
[黄湘, 李卫红, 陈亚宁, 马建新 (2007). 塔里木河下游荒漠河岸林群落土壤呼吸及其影响因子. 生态学报, 27, 1953-1958.] | |
[21] | Jian JS, Frissell M, Hao DL, Tang XL, Berryman E, Bond-Lamberty B (2022). The global contribution of roots to total soil respiration. Global Ecology and Biogeography, 31, 685-699. |
[22] | Kelting DL, Burger JA, Edwards GS (1998). Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry, 30, 961-968. |
[23] | Knapp AK, Conard SL, Blair JM (1998). Determinants of soil CO2 flux from a sub-humid grassland: effect of fire and fire history. Ecological Applications, 8, 760-770. |
[24] |
Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011). Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America, 108, 14769-14774.
DOI PMID |
[25] | Kucera CL, Kirkham DR (1971). Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52, 912-915. |
[26] |
Lefèvre R, Barré P, Moyano FE, Christensen BT, Bardoux G, Eglin T, Girardin C, Houot S, Kätterer T, van Oort F, Chenu C (2014). Higher temperature sensitivity for stable than for labile soil organic carbon—Evidence from incubations of long-term bare fallow soils. Global Change Biology, 20, 633-640.
PMID |
[27] | Legesse TG, Qu LP, Dong G, Dong XB, Ge TD, Daba NA, Tadesse KA, Sorecha EM, Tong Q, Yan YC, Chen BR, Xin XP, Changliang S (2022). Extreme wet precipitation and mowing stimulate soil respiration in the Eurasian meadow steppe. Science of the Total Environment, 851, 158130. DOI: 10.1016/j.scitotenv.2022.158130. |
[28] | Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM (2017). Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106, 18-27. |
[29] | Li SZ, Yuan ZQ, Lin L, Chen FF, Wang JN, Gao YT, Lei WJ, Liu J, Peng YF, Shen Q, Jin HJ, Luo DL (2024). Spatial distribution of soil organic carbon and total nitrogen contents in association with permafrost variability in the Source Areas of the Yangtze and Yellow Rivers. Acta Ecologica Sinica, 44, 5246-5258. |
[李世珍, 袁自强, 林琳, 陈方方, 王金牛, 高怡婷, 雷汶杰, 刘佳, 彭贻菲, 沈琦, 金会军, 罗栋梁 (2024). 江河源冻土区土壤碳氮空间分布特征及其影响因素. 生态学报, 44, 5246-5258.] | |
[30] | Liang GP, Cai AD, Wu HJ, Wu XP, Houssou AA, Ren CJ, Wang ZT, Gao LL, Wang BS, Li SP, Song XJ, Cai DX (2019a). Soil biochemical parameters in the rhizosphere contribute more to changes in soil respiration and its components than those in the bulk soil under nitrogen application in croplands. Plant and Soil, 435, 111-125. |
[31] | Liang YN, Cai YP, Yan JX, Li HJ (2019b). Estimation of soil respiration by its driving factors based on multi-source data in a sub-alpine meadow in North China. Sustainability, 11, 3274. DOI:10.3390/su11123274. |
[32] | Liu F, Wu MH, Wei PJ, Jia YL, Chen SY (2020). Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region. Acta Ecologica Sinica, 40, 6416-6426. |
[刘放, 吴明辉, 魏培洁, 贾映兰, 陈生云 (2020). 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征. 生态学报, 40, 6416-6426.] | |
[33] |
Liu LL, Wang X, Lajeunesse MJ, Miao GF, Piao SL, Wan SQ, Wu YX, Wang ZH, Yang S, Li P, Deng MF (2016). A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 22, 1394-1405.
DOI PMID |
[34] | Liu P, Jia X, Yang Q, Zha TS, Wang B, Ma JY (2018). Characterization of soil respiration in a shrubland ecosystem of Artemisia ordosica in Mu Us desert. Scientia Silvae Sinicae, 54(5), 10-17. |
[刘鹏, 贾昕, 杨强, 查天山, 王奔, 马景永 (2018). 毛乌素沙地油蒿灌丛生态系统的土壤呼吸特征. 林业科学, 54(5), 10-17.] | |
[35] | Liu S, Yang HG, Luo D, Shi ZM, Liu QL, Zhang L (2019). Seasonal dynamics of soil respiration and gross nitrification rate of different subalpine forests in western Sichuan. Acta Ecologica Sinica, 39, 550-560. |
[刘顺, 杨洪国, 罗达, 史作民, 刘千里, 张利 (2019). 川西亚高山不同森林类型土壤呼吸和总硝化速率的季节动态. 生态学报, 39, 550-560.] | |
[36] | Lu B, Wang SH, Mao ZJ, Sun T, Jia GM, Jin SB, Sun PF, Cheng CX (2010). Soil respiration characteristics of four primary Korean pine communities in growing season at Xiaoxing’an Mountain, China. Acta Ecologica Sinica, 30, 4065-4074. |
[陆彬, 王淑华, 毛子军, 孙涛, 贾桂梅, 靳世波, 孙鹏飞, 程春香 (2010). 小兴安岭4种原始红松林群落类型生长季土壤呼吸特征. 生态学报, 30, 4065-4074.] | |
[37] | Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
[38] | Luo YQ, Zhang FX, Ding JP, Bai HJ, Li YQ (2023). Soil respiration may be reduced by wind via the suppressing of root respiration: field observation in maize farmland in the agro-pastoral transitional zone, northeastern China. Ecological Indicators, 146. DOI: 10.1016/j.ecolind.2022.109824. |
[39] | Luo YQ, Zhou XH (2006). Soil Respiration and the Environment. Academic Press, Boston, USA. |
[40] | Ma MZ, Zang ZH, Xie ZQ, Chen QS, Xu WT, Zhao CM, Shen GZ (2019). Soil respiration of four forests along elevation gradient in northern subtropical China. Ecology and Evolution, 9, 12846-12857. |
[41] |
Ma ZL, Zhao WQ, Liu M, Zhu P, Liu Q (2018). Research progress on the responses of soil respiration components to climatic warming. Chinese Journal of Applied Ecology, 29, 3477-3486.
DOI |
[马志良, 赵文强, 刘美, 朱攀, 刘庆 (2018). 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29, 3477-3486.]
DOI |
|
[42] | Makita N, Fujimoto R, Tamura A (2021). The contribution of roots, mycorrhizal hyphae, and soil free-living microbes to soil respiration and its temperature sensitivity in a larch forest. Forests, 12, 1410. DOI:10.3390/f12101410. |
[43] | Moinet GYK, Midwood AJ, Hunt JE, Rumpel C, Millard P, Chabbi A (2019). Grassland management influences the response of soil respiration to drought. Agronomy, 9, 124. DOI: 10.1016/j.scitotenv.2019.05.419. |
[44] | Morris KA, Hornum S, Crystal-Ornelas R, Pennington SC, Bond-Lamberty B (2022). Soil respiration response to simulated precipitation change depends on ecosystem type and study duration. Journal of Geophysical Research: Biogeosciences, 127, e2022JG006887. DOI: 10.1029/2022JG006887. |
[45] | Olchev A, Volkova E, Karataeva T, Novenko E (2013). Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a Sphagnum mire in the broad-leaved forest zone of European Russia. Environmental Research Letters, 8, 035051. DOI:10.1088/1748-9326/8/3/035051. |
[46] | Pang XY, Bao WK, Zhu B, Cheng WX (2013). Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agricultural and Forest Meteorology, 171, 57-64. |
[47] | Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S,van der Werf GR (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 600-603. |
[48] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44, 81-89. |
[49] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12, 1007-1020. |
[50] | Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81-91. |
[51] | Schindlbacher A, Zechmeister-Boltenstern S, Glatzel G, Jandl R (2007). Winter soil respiration from an Austrian mountain forest. Agricultural and Forest Meteorology, 146, 205-215. |
[52] | Sheng H, Yang YS, Chen GS, Gao R, Zeng HD, Zhong XF (2007). The dynamic response of plant root respiration to increasing temperature and global warming. Acta Ecologica Sinica, 27, 1596-1605. |
[盛浩, 杨玉盛, 陈光水, 高人, 曾宏达, 钟羡芳 (2007). 植物根呼吸对升温的响应. 生态学报, 27, 1596-1605.] | |
[53] | Shi BK, Gao WF, Cai HY, Jin GZ (2016). Spatial variation of soil respiration is linked to the forest structure and soil parameters in an old-growth mixed broadleaved-Korean pine forest in Northeastern China. Plant and Soil, 400, 263-274. |
[54] | Singh BK, Bardgett RD, Smith P, Reay DS (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews: Microbiology, 8, 779-790. |
[55] | Sun J (2021). Effects of Elevation Gradient and Litter Manipulation on Soil Respiration and Its Temperature Sensitivity in Pines taiwanensis Forest. PhD dissertation, Fujian Normal University, Fuzhou. |
[孙俊 (2021). 海拔梯度和凋落物处理对黄山松林土壤呼吸及其温度敏感性的影响. 博士学位论文, 福建师范大学, 福州.] | |
[56] | Tang YF, Wang GB, Ruan HH (2008). A review on the sensitivity of soil respiration to temperature. Journal of Nanjing Forestry University (Natural Sciences Edition), 32, 124-128. |
[唐燕飞, 王国兵, 阮宏华 (2008). 土壤呼吸对温度的敏感性研究综述. 南京林业大学学报(自然科学版), 32, 124-128.] | |
[57] | Tang FK, Cui M, Lu Q, Zhou JX, Guo HY, Wang ZY (2016). Soil respiration and temperature sensitivity of different vegetation types in Karst canyon. Bulletin of Soil and Water Conservation, 36(1), 61-68. |
[唐夫凯, 崔明, 卢琦, 周金星, 郭红艳, 王昭艳 (2016). 喀斯特峡谷不同植被类型土壤的呼吸及其温度敏感性. 水土保持通报, 36(1), 61-68.] | |
[58] | Tian ZJ, Jia XY, Liu TT, Ma EY, Xue LM, Hu YQ, Zheng QR (2022). Seasonal changes in soil respiration with an elevation gradient in Abies nephrolepis (Trautv.) Maxim. forests in North China. Phyton, 91, 1543-1556. |
[59] | Vargas R, Allen MF (2008). Diel patterns of soil respiration in a tropical forest after Hurricane Wilma. Journal of Geophysical Research: Biogeosciences, 113, G03021. DOI: 10.1029/2007JG000620. |
[60] | Wang GC, Du R, Kong QX, Lü DR (2004). Experimental study on soil respiration of temperate grassland in China. Chinese Science Bulletin, 49, 642-646. |
[61] | Wang JL, Liu YZ, Cao WX, Li W, Wang XJ, Zhang DG, Shi SL, Pan DF, Liu WL (2020). Effects of grazing exclusion on soil respiration components in an alpine meadow on the north-eastern Qinghai-Tibet Plateau. Catena, 194, 104750. DOI: 10.1016/j.catena.2020.104750. |
[62] | Wang W, Fang JY (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28. |
[63] | Wang W, Guo JX (2006). Contribution of root respiration of Suaeda salsa community to soil respiration in Songnen meadow grassland. Chinese Science Bulletin, 51, 559-564. |
[王娓, 郭继勋 (2006). 松嫩草甸草地碱茅群落根呼吸对土壤呼吸的贡献. 科学通报, 51, 559-564.] | |
[64] | Wang X, Fan KK, Yan YC, Chen BR, Yan RR, Xin XP, Li LH (2023). Controls of seasonal and interannual variations on soil respiration in a meadow steppe in eastern Inner Mongolia. Agronomy, 13, 20. DOI:10.3390/agronomy13010020. |
[65] | Wang Y, Ruan HH, Huang LL (2014). Seasonal dynamics of soil respiration and its sensitivity to temperature under different land use patterns in lake reclamation. Journal of Anhui Agricultural Sciences, 42, 4633-4635. |
[王莹, 阮宏华, 黄亮亮 (2014). 围湖造田不同土地利用方式下土壤呼吸季节动态及其对温度的敏感性. 安徽农业科学, 42, 4633-4635.] | |
[66] | Wang YY, Xiao JF, Ma YM, Luo YQ, Hu ZY, Li F, Li YN, Gu LL, Li ZG, Yuan L (2021). Carbon fluxes and environmental controls across different alpine grassland types on the Tibetan Plateau. Agricultural and Forest Meteorology, 311, 108694. DOI: 10.1016/j.agrformet.2021.108694. |
[67] | Wei L, Liu J, Su JS, Jing GH, Zhao J, Cheng JM, Jin JW (2016). Effect of clipping on soil respiration components in temperate grassland of Loess Plateau. European Journal of Soil Biology, 75, 157-167. |
[68] | Wei SJ, Luo BZ, Sun L, Wei SW, Liu FF, Hu HQ (2013). Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: a review. Ecology and Environmental Sciences, 22, 689-704. |
[魏书精, 罗碧珍, 孙龙, 魏书威, 刘芳芳, 胡海清 (2013). 森林生态系统土壤呼吸时空异质性及影响因子研究进展. 生态环境学报, 22, 689-704.] | |
[69] | Wu JG, Ai L (2008). Soil microbial activity and biomass C and N content in three typical ecosystems in Qi Lian Mountains, China. Journal of Plant Ecology (Chinese Version), 32, 465-476. |
[吴建国, 艾丽 (2008). 祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量. 植物生态学报, 32, 465-476.]
DOI |
|
[70] | Wu ZX, Guan LM, Chen BQ, Yang C, Lan GY, Xie GS, Zhou ZD (2013). Components of soil respiration and its monthly dynamics in rubber plantation ecosystems. [2024-05-28]. https://ieeexplore.ieee.org/document/6598006. |
[71] | Xu HH (2007). Vertical distribution and characteristics of Wuyishan natural vegetation. Wuyi Science Journal, 23, 177-180. |
[徐欢欢 (2007). 武夷山自然保护区植被垂直分布与特征. 武夷科学, 23, 177-180.] | |
[72] | Yang YS, Dong B, Xie JS, Chen GS, Gao R, Li L, Wang XG, Guo JF (2004). Soil respiration of forest ecosystems and its respondence to global change. Acta Ecologica Sinica, 24, 583-591. |
[杨玉盛, 董彬, 谢锦升, 陈光水, 高人, 李灵, 王小国, 郭剑芬 (2004). 森林土壤呼吸及其对全球变化的响应. 生态学报, 24, 583-591.] | |
[73] | Yao TD, Xue YK, Chen DL, Chen FH, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang RH, Xu BQ, Dozier J, Gillespie T, Gu Y, et al.(2019). Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society, 100, 423-444. |
[74] | Zhang LH, Chen YN, Zhao RF, Li WH (2010). Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. Journal of Arid Environments, 74, 1200-1211. |
[75] |
Zheng JJ, Huang SY, Jia X, Tian Y, Mu Y, Liu P, Zha TS (2020). Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China. Chinese Journal of Plant Ecology, 44, 687-698.
DOI |
[郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山 (2020). 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素. 植物生态学报, 44, 687-698.] | |
[76] | Zhu HJ, Lin ZS, Chen ZG, Tan BH, Guo CD (1982). The vertical zonation and characteristics of soils in Wuyishan. Wuyi Science Journal, 2, 152-164. |
[朱鹤健, 林振盛, 陈珍皋, 谭炳华, 郭成达 (1982). 武夷山土壤垂直分布和特征. 武夷科学, 2, 152-164.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[6] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[7] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[8] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[9] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[10] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[11] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[12] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[13] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[14] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
[15] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19