植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 540-551.DOI: 10.17521/cjpe.2024.0354 cstr: 32100.14.cjpe.2024.0354
乔沛阳1,*, 顾肖璇1,2,*, 刘昌鑫1, 曹泽宇1, 张婷婷1, 林晨1, 陈钦常1, 彭修凡1, 陈菲菲1, 李华亮3, 陈伟3, 陈鹭真1,**()(
)
收稿日期:
2024-10-10
接受日期:
2025-01-14
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
** (luzhenchen@xmu.edu.cn)作者简介:
*同等贡献
基金资助:
QIAO Pei-Yang1,*, GU Xiao-Xuan1,2,*, LIU Chang-Xin1, CAO Ze-Yu1, ZHANG Ting-Ting1, LIN Chen1, CHEN Qin-Chang1, PENG Xiu-Fan1, CHEN Fei-Fei1, LI Hua-Liang3, CHEN Wei3, CHEN Lu-Zhen1,**()(
)
Received:
2024-10-10
Accepted:
2025-01-14
Online:
2025-04-20
Published:
2025-04-18
Contact:
** (luzhenchen@xmu.edu.cn)
About author:
*Contributed equally to this work
Supported by:
摘要: 2024年9月6日, 超强台风“摩羯”正面登陆海南文昌、海口, 对登陆区域的海南东寨港红树林造成严重破坏。该研究在台风袭击后一周后, 对海南东寨港红树林自然保护区内的4个代表性地点的9个红树植物群落进行受损程度调查。结果表明: 1)与台风路径相距约4.5 km的演丰红树林和6.5 km的三江红树林受损严重, 其中拉关木(Laguncularia racemosa)群落和无瓣海桑(Sonneratia apetala)群落受损极严重; 距台风路径2 km的塔市鸟岛红树林中度受损; 距台风路径0.3 km的博度红树林轻度受损, 结合无人机影像发现在潮沟边缘的群落受损程度大于连片分布区中心。2)在踏查的6个物种中, 海莲(Burguiera sexangula)、秋茄(Kandelia obovata)、桐花树(Aegiceras corniculatum)和角果木(Ceriops tagal)植株的机械性损伤多表现为分枝折断和部分叶片脱落; 外来物种无瓣海桑和拉关木比乡土物种受损程度更高, 表现为冠层叶片几乎全部脱落, 群落中96.62%-99.70%的个体受到不同程度的损伤, 9.64%个体的主干被折断, 甚至整株被连根拔起; 3)除了博度低矮的角果木群落外, 同一群落不同地点距台风路径直线距离越近群落受损程度越高; 树高、胸径、冠幅与受损程度显著正相关, 树木越高大受损程度越高。根据受损程度预测, 未来乡土植物群落将比外来物种群落恢复得更快。台风灾害往往在短时间内对红树植物造成严重损害, 因此在红树林修复工程中要重点考虑其抗风能力, 可采取多物种混合种植, 以提高红树植物群落的稳定性和防风能力。
乔沛阳, 顾肖璇, 刘昌鑫, 曹泽宇, 张婷婷, 林晨, 陈钦常, 彭修凡, 陈菲菲, 李华亮, 陈伟, 陈鹭真. 超强台风“摩羯”登陆点海南东寨港红树林受损状况研究. 植物生态学报, 2025, 49(4): 540-551. DOI: 10.17521/cjpe.2024.0354
QIAO Pei-Yang, GU Xiao-Xuan, LIU Chang-Xin, CAO Ze-Yu, ZHANG Ting-Ting, LIN Chen, CHEN Qin-Chang, PENG Xiu-Fan, CHEN Fei-Fei, LI Hua-Liang, CHEN Wei, CHEN Lu-Zhen. Damage to the mangrove forests in Dongzhaigang of Hainan caused by super typhoon “Yagi”. Chinese Journal of Plant Ecology, 2025, 49(4): 540-551. DOI: 10.17521/cjpe.2024.0354
图1 东寨港红树林调查样地的分布图和超强台风“摩羯”的路径。
Fig. 1 Mangrove forests distribution in investigation sites in Dongzhaigang and the pathway of super typhoon “Yagi”. UAV, unmanned aerial vehicle.
受损情况/分级 Damage status/tier | 分级依据 Grading basis | 示例 Example |
---|---|---|
断树 Break tree | 主干断裂 Trunk break | ![]() |
倒树 Fall tree | 主干倒伏 Trunk down, uprooted | ![]() |
1级 Tier 1 | 主干完整、直立; 少量分枝(<10%)保留; 全部叶片脱落 Trunk complete; few branches (<10%) retained; all leaves detached | ![]() ![]() |
2级 Tier 2 | 主干完整、直立; 部分分枝(10%-40%)保留; 全部叶片脱落 Trunk complete; some branches (10%-40%) retained; all leaves detached | ![]() ![]() |
3级 Tier 3 | 主干完整、直立; 多数分枝(40%-70%)保留; 部分叶片保留(10%-40%) Trunk complete; most branches (40%-70%) retained; some leaves retained (10%-40%) | ![]() ![]() |
正常 Normal | 主干完整、直立; 大量分枝(70%-100%)保留; 多数叶片保留(40%-100%) Trunk complete; large number of branches (70%-100%) retained; most leaves retained (40%-100%) | ![]() ![]() |
表1 红树受损程度分级方法
Table 1 Method of grading mangrove damage
受损情况/分级 Damage status/tier | 分级依据 Grading basis | 示例 Example |
---|---|---|
断树 Break tree | 主干断裂 Trunk break | ![]() |
倒树 Fall tree | 主干倒伏 Trunk down, uprooted | ![]() |
1级 Tier 1 | 主干完整、直立; 少量分枝(<10%)保留; 全部叶片脱落 Trunk complete; few branches (<10%) retained; all leaves detached | ![]() ![]() |
2级 Tier 2 | 主干完整、直立; 部分分枝(10%-40%)保留; 全部叶片脱落 Trunk complete; some branches (10%-40%) retained; all leaves detached | ![]() ![]() |
3级 Tier 3 | 主干完整、直立; 多数分枝(40%-70%)保留; 部分叶片保留(10%-40%) Trunk complete; most branches (40%-70%) retained; some leaves retained (10%-40%) | ![]() ![]() |
正常 Normal | 主干完整、直立; 大量分枝(70%-100%)保留; 多数叶片保留(40%-100%) Trunk complete; large number of branches (70%-100%) retained; most leaves retained (40%-100%) | ![]() ![]() |
物种 Species | 木材密度 Woody density (g·cm-3) | 来源 Reference |
---|---|---|
桐花树 Aegiceras corniculatum | 0.64 | Jiang et al., |
海莲 Burguiera sexangula | 0.63 | Li, |
角果木 Ceriops tagal | 0.77 | Howard et al., |
秋茄 Kandelia obovata | 0.52 | Li, |
拉关木 Laguncularia racemosa | 0.60 | Howard et al., |
红树 Rhizophora apiculata | 0.74 | Howard et al., |
无瓣海桑 Sonneratia apetala | 0.50 | Howard et al., |
表2 各红树物种的木材密度
Table 2 Woody density of different mangrove species
物种 Species | 木材密度 Woody density (g·cm-3) | 来源 Reference |
---|---|---|
桐花树 Aegiceras corniculatum | 0.64 | Jiang et al., |
海莲 Burguiera sexangula | 0.63 | Li, |
角果木 Ceriops tagal | 0.77 | Howard et al., |
秋茄 Kandelia obovata | 0.52 | Li, |
拉关木 Laguncularia racemosa | 0.60 | Howard et al., |
红树 Rhizophora apiculata | 0.74 | Howard et al., |
无瓣海桑 Sonneratia apetala | 0.50 | Howard et al., |
调查地点 Investigation site | 群落 Community | 平均株高 Mean height (m) | 叶面积指数 LAI | 倒木产量 Dead wood production (kg·m-2) |
---|---|---|---|---|
博度 Bodu | 角果木群落 Ceriops tagal community | 0.70 | 1.77 ± 0.69a | 0.31 ± 0.10c |
演丰 Yanfeng | 海莲群落 Burguiera sexangula community | 4.62 | 1.16 ± 0.26b | 1.56 ± 0.30b |
秋茄群落 Kandelia obovata community | 4.32 | 0.91 ± 0.11bc | 0.34 ± 0.08c | |
红树群落 Rhizophora apiculata community | 5.12 | 1.62 ± 0.25a | 7.20 ± 7.17a | |
拉关木群落 Laguncularia racemosa community | 7.97 | 0.16 ± 0.09de | 0.40 ± 0.39c | |
三江 Sanjiang | 海莲群落 Burguiera sexangula community | 5.83 | 0.30 ± 0.06de | 0.43 ± 0.35c |
秋茄群落 Kandelia obovata community | 5.81 | 0.16 ± 0.10de | 2.20 ± 1.23b | |
桐花树群落 Aegiceras corniculatum community | 2.30 | 0.62 ± 0.13cd | 1.82 ± 0.93b | |
无瓣海桑群落 Sonneratia apetala community | 10.50 | 0.08 ± 0.09e | 3.84 ± 1.27ab |
表3 各调查地点主要红树植物群落的株高、叶面积指数和倒木产量(平均值±标准差)
Table 3 LAI and dead wood production for the main mangrove forests in each investigation site (mean ± SD)
调查地点 Investigation site | 群落 Community | 平均株高 Mean height (m) | 叶面积指数 LAI | 倒木产量 Dead wood production (kg·m-2) |
---|---|---|---|---|
博度 Bodu | 角果木群落 Ceriops tagal community | 0.70 | 1.77 ± 0.69a | 0.31 ± 0.10c |
演丰 Yanfeng | 海莲群落 Burguiera sexangula community | 4.62 | 1.16 ± 0.26b | 1.56 ± 0.30b |
秋茄群落 Kandelia obovata community | 4.32 | 0.91 ± 0.11bc | 0.34 ± 0.08c | |
红树群落 Rhizophora apiculata community | 5.12 | 1.62 ± 0.25a | 7.20 ± 7.17a | |
拉关木群落 Laguncularia racemosa community | 7.97 | 0.16 ± 0.09de | 0.40 ± 0.39c | |
三江 Sanjiang | 海莲群落 Burguiera sexangula community | 5.83 | 0.30 ± 0.06de | 0.43 ± 0.35c |
秋茄群落 Kandelia obovata community | 5.81 | 0.16 ± 0.10de | 2.20 ± 1.23b | |
桐花树群落 Aegiceras corniculatum community | 2.30 | 0.62 ± 0.13cd | 1.82 ± 0.93b | |
无瓣海桑群落 Sonneratia apetala community | 10.50 | 0.08 ± 0.09e | 3.84 ± 1.27ab |
图3 东寨港红树林样地中各群落主要物种受灾情况(平均值±标准差)。
Fig. 3 Damage tiers of dominant species in sample plots in mangrove forests in Dongzhaigang (mean ± SD). Ac, Aegiceras corniculatum; Bs, Bruguiera sexangula; Ct, Ceriops tagal; Ko, Kandelia obovata; Lr, Laguncularia racemosa; Ra, Rhizophora apiculata; Sa, Sonneratia apetala.
调查地点 Investigation site | 群落 Community | 受损植株比例 Damage individual percentage (%) |
---|---|---|
博度 Bodu | 角果木群落 Ceriops tagal community | 0e |
演丰 Yanfeng | 海莲群落 Bruguiera sexangula community | 36.03 ± 23.21c |
秋茄群落 Kandelia obovata community | 0e | |
红树群落 Rhizophora apiculata community | 3.36 ± 3.59d | |
拉关木群落 Laguncularia racemosa community | 96.62 ± 4.38a | |
三江 Sanjiang | 海莲群落 Bruguiera sexangula community | 65.27 ± 20.24b |
秋茄群落 Kandelia obovata community | 79.03 ± 10.42b | |
桐花树群落 Aegiceras corniculatum community | 2.16 ± 2.22d | |
无瓣海桑群落 Sonneratia apetala community | 99.07 ± 1.60a |
表4 东寨港各样地红树群落受损情况(平均值±标准差)
Table 4 Damage status of different community in each sample site in Dongzhaigang (mean ± SD)
调查地点 Investigation site | 群落 Community | 受损植株比例 Damage individual percentage (%) |
---|---|---|
博度 Bodu | 角果木群落 Ceriops tagal community | 0e |
演丰 Yanfeng | 海莲群落 Bruguiera sexangula community | 36.03 ± 23.21c |
秋茄群落 Kandelia obovata community | 0e | |
红树群落 Rhizophora apiculata community | 3.36 ± 3.59d | |
拉关木群落 Laguncularia racemosa community | 96.62 ± 4.38a | |
三江 Sanjiang | 海莲群落 Bruguiera sexangula community | 65.27 ± 20.24b |
秋茄群落 Kandelia obovata community | 79.03 ± 10.42b | |
桐花树群落 Aegiceras corniculatum community | 2.16 ± 2.22d | |
无瓣海桑群落 Sonneratia apetala community | 99.07 ± 1.60a |
变量 Variable | 自由度 Degree of freedom | F | p | |
---|---|---|---|---|
受损程度 Tier | 地点 Site | 1 | 90.22 | <0.001 |
物种 Species | 5 | 176.18 | <0.001 | |
树高 Height | 1 | 18.51 | <0.001 | |
胸径 DBH | 1 | 27.40 | <0.001 | |
冠幅 Canopy | 1 | 58.73 | <0.001 |
表5 东寨港红树树木受损情况的多因素方差分析
Table 5 Multiple-way ANOVA for the damage of mangrove tree tiers in Dongzhaigang
变量 Variable | 自由度 Degree of freedom | F | p | |
---|---|---|---|---|
受损程度 Tier | 地点 Site | 1 | 90.22 | <0.001 |
物种 Species | 5 | 176.18 | <0.001 | |
树高 Height | 1 | 18.51 | <0.001 | |
胸径 DBH | 1 | 27.40 | <0.001 | |
冠幅 Canopy | 1 | 58.73 | <0.001 |
图5 树木受损程度与群落结构的相关性分析(A)以及与台风路径的距离、群落结构对树木受损程度的单独效应值(B)。图中·、*、**和***分别表示数据间存在p < 0.1、p < 0.05、p < 0.01和p < 0.001的显著差异。
Fig. 5 Correlation analysis between damage tiers and community structures (A) and individual effects of distance from investigating sites to “Yagi” pathway and community structures (B). ·, *, ** and *** indicate significant differences at p < 0.1, p < 0.05, p < 0.01 and p < 0.001 levels between the data, respectively. DBH, diameter at breast height; LAI, leaf area index.
[1] | Alongi DM (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13. |
[2] | Brown JK, Roussopoulos PJ (1974). Eliminating biases in the planar intersect method for estimating volumes of small fuels. Forest Science, 20, 350-356. |
[3] | Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology, 91, 1093-1105. |
[4] | Chen LZ, Gu XX, Zhong CR, Huang LH (2019). Haikou Wetland: Mangrove Forests. Xiamen University Press, Xiamen. |
[陈鹭真, 顾肖璇, 钟才荣, 黄黎晗 (2019). 海口湿地: 红树林篇. 厦门大学出版社, 厦门.] | |
[5] | Chen LZ, Yang SC, Lin GH (2021). Mangrove Forests in China Under Global Change. Xiamen University Press, Xiamen. |
[陈鹭真, 杨盛昌, 林光辉 (2021). 全球变化下的中国红树林. 厦门大学出版社, 厦门.] | |
[6] | Chianucci F, Macek M (2023). hemispheR: an R package for fisheye canopy image analysis. Agricultural and Forest Meteorology, 336, 109470. DOI: 10.1016/j.agrformet.2023.109470. |
[7] | Dahdouh-Guebas F, Pulukkuttige JL (2009). A bibliometrical review on pre- and posttsunami assumptions and facts about mangroves and other coastal vegetation as protective buffers. Ruhuna Journal of Science, 4, 28-50. |
[8] | Fluet-Chouinard E, Stocker BD, Zhang Z, Malhotra A, Melton JR, Poulter B, Kaplan JO, Goldewijk KK, Siebert S, Minayeva T, Hugelius G, Joosten H, Barthelmes A, Prigent C, Aires F, et al. (2023). Extensive global wetland loss over the past three centuries. Nature, 614, 281-286. |
[9] | He YX, Guan W, Xue D, Liu LF, Peng CH, Liao BW, Hu J, Zhu QA, Yang YZ, Wang X, Zhou GY, Wu ZM, Chen H (2019). Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang, Hainan Island. Science of the Total Environment, 697, 133945. DOI: 10.1016/j.scitotenv.2019.133945. |
[10] | Hochard JP, Hamilton S, Barbier EB (2019). Mangroves shelter coastal economic activity from cyclones. Proceedings of the National Academy of Sciences of the United States of America, 116, 12232-12237. |
[11] | Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA. |
[12] | Jia HS, Li DQ, Han YQ (2000). Advances in studies on photoinhibition in photosynthesis of higher plants. Chinese Bulletin of Botany, 17(3), 218-224. |
[贾虎森, 李德全, 韩亚琴 (2000). 高等植物光合作用的光抑制研究进展. 植物学通报, 17(3), 218-224.] | |
[13] | Jiang X, Choat B, Zhang YJ, Guan XY, Shi W, Cao KF (2021). Variation in xylem hydraulic structure and function of two mangrove species across a latitudinal gradient in eastern Australia. Water, 13, 850. DOI: 10.3390/w13060850. |
[14] |
Krauss KW, Osland MJ (2020). Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany, 125, 213-234.
DOI PMID |
[15] | Li YC (2021). Xylem Anatomical Structure and Response to Environment of Mangrove. Master degree dissertation, Guangxi University, Nanning. 18. |
[李艺蝉 (2021). 红树植物木质部结构特征及其对环境因子的响应. 硕士学位论文, 广西大学, 南宁. 18.] | |
[16] | McCoy ED, Mushinsky HR, Johnson D, Meshaka WE (1996). Mangrove damage caused by hurricane andrew on the southwestern coast of Florida. Bulletin of Marine Science, 59, 1-8. |
[17] | Paling EI, Kobryn HT, Humphreys G (2008). Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuarine, Coastal and Shelf Science, 77, 603-613. |
[18] | Qiu MH, Wang RL, Ding DJ, Mao J, Liao BW (2016). Impact of “Rammasun” on mangrove communities in Dongzhaigang, Hainan. Ecological Science, 35(2), 118-122. |
[邱明红, 王荣丽, 丁冬静, 毛静, 廖宝文 (2016). 台风“威马逊”对东寨港红树林灾害程度影响因子分析. 生态科学, 35(2), 118-122.] | |
[19] | Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT (2018). Mangrove mortality in a changing climate: an overview. Estuarine, Coastal and Shelf Science, 215, 241-249. |
[20] | Snedaker S (2002). Mangrove Ecology, Silviculture, and Conservation. Kluwer Academic Publishers, Dordrecht, The Netherlands. |
[21] | Villamayor BMR, Rollon RN, Samson MS, Albano GMG, Primavera JH (2016). Impact of Haiyan on Philippine mangroves: implications to the fate of the widespread monospecific Rhizophora plantations against strong typhoons. Ocean & Coastal Management, 132, 1-14. |
[22] | Ye Y, Tan FY, Lu CY (2001). Effects of soil texture and light on growth and physiology parameters in Kandelia candel. Acta Phytoecologica Sinica, 25, 42-49. |
[叶勇, 谭凤仪, 卢昌义 (2001). 土壤结构与光照水平对秋茄某些生长和生理参数的影响. 植物生态学报, 25, 42-49.] | |
[23] | Zhang XX, Lin PZ, Chen XP (2022). Coastal protection by planted mangrove forest during typhoon mangkhut. Journal of Marine Science and Engineering, 10, 1288. DOI: 10.3390/jmse10091288. |
[1] | 张静 陈洁 李艳朋 盘李军 许涵 李意德 何海生. 南亚热带针阔混交人工林植物生物量比较及其影响因子分析[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[2] | 马东峰, 贾存智, 王学朋, 赵鹏鹏, 胡小文. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1): 93-102. |
[3] | 房凯, 王迎新, 黄建辉, 段俊光, 张琦, 张倩, 甘红豪, 褚建民. 内蒙古典型草原不同退化阶段植被恢复的养分限制因子解析[J]. 植物生态学报, 2025, 49(1): 7-18. |
[4] | 孙佳美, 安冰儿, 刘伟, 王璟, 潘庆民. 草原植物繁殖体调控技术: “蘖芽岛”的培育与移植[J]. 植物生态学报, 2025, 49(1): 129-137. |
[5] | 姚博, 陈云, 曹雯婕, 龚相文, 罗永清, 郑成卓, 王旭洋, 王正文, 李玉强. 呼伦贝尔退化沙地植被-土壤碳氮磷互馈关系及微生物驱动机制[J]. 植物生态学报, 2025, 49(1): 59-73. |
[6] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[7] | 王雯莹, 肖元明, 王小赟, 徐嘉昕, 马玉花, 李强峰, 周国英. 多功能群物种配置模式下退化高寒草甸植物多样性与生态系统多功能性的关联[J]. 植物生态学报, 2025, 49(1): 103-117. |
[8] | 郝毅晴, 刘伟, 杨阳, 安冰儿, 范冰, 李超, 崔久辉, 程延彬, 孙佳美, 潘庆民. 有机肥和无机肥对退化草原羊草种群密度和个体生物量的影响[J]. 植物生态学报, 2025, 49(1): 148-158. |
[9] | 王麟, 李雪, 王愉, 王新, 胡小文, 杨梅, 朱剑霄. 不同配方种衣剂对高寒草地乡土草种种子生长与建植的影响[J]. 植物生态学报, 2025, 49(1): 118-128. |
[10] | 夏敏菖, 李倩倩, 钱清清, 任淑君, 梁应冲, 陈亭颖, 李映佳, 牟宗敏, 陈穗云. 青霉菌灭活菌丝体对白车轴草和黑麦草生长及生理特性的影响[J]. 植物生态学报, 2025, 49(1): 189-198. |
[11] | 董云焘, 贾恒锋, 杨晶, 李佩轩, 方欧娅. 祁连山中部祁连圆柏林干扰历史重建[J]. 植物生态学报, 2024, 48(8): 967-976. |
[12] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[13] | 蔡慧颖, 李兰慧, 林阳, 梁亚涛, 杨光, 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(6): 780-793. |
[14] | 杜忠毓, 王佳, 陈光才. 土壤种子库特征对全球变化和人类活动的响应: 研究进展与展望[J]. 植物生态学报, 2024, 48(12): 1561-1575. |
[15] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19