植物生态学报 ›› 2025, Vol. 49 ›› Issue (6): 952-964.DOI: 10.17521/cjpe.2024.0258 cstr: 32100.14.cjpe.2024.0258
收稿日期:
2024-08-05
接受日期:
2024-12-10
出版日期:
2025-06-20
发布日期:
2025-01-20
通讯作者:
*胡文海(huwenhai@jgsu.edu.cn)基金资助:
YAN Xiao-Hong, HU Wen-Hai*()(
)
Received:
2024-08-05
Accepted:
2024-12-10
Online:
2025-06-20
Published:
2025-01-20
Supported by:
摘要:
越冬期常绿植物因光能吸收与利用的不平衡而造成冬季光抑制伤害, 虽然对于温带和北方冰冻环境下常绿植物冬季光保护策略已有许多研究, 但对不同耐冷性的常绿阔叶植物叶片光保护机制对亚热带零上低温为主的冬季低温的响应却了解有限。该研究选取栽培于亚热带的红叶石楠(Photinia × fraseri, 耐冷性强)、荷花木兰(Magnolia grandiflora, 耐冷性中等)和雅榕(Ficus concinna, 冷敏感)为材料, 对这3种常绿阔叶植物阴生叶和阳生叶光系统II (PSII)和光系统I (PSI)功能从秋季至翌年春季的变化展开研究。结果表明: 3种常绿阔叶植物阴生叶和阳生叶PSII和PSI光抑制及其光保护途径对冬季低温和初春升温表现出不同的温度响应特征。冬季低温强光仅造成红叶石楠阳生叶PSII轻微可逆光抑制, 但导致荷花木兰和雅榕阳生叶PSII和PSI严重光抑制, 并且雅榕PSII最大光化学效率(Fv/Fm)和PSI反应中心P700最大荧光信号(Pm)的下降幅度明显大于荷花木兰。红叶石楠阳生叶在冬季可通过增强热耗散(NPQ)和围绕PSI的环式电子传递(CEF-PSI)保护PSII和PSI, 且冬季低温强光刺激了阳生叶PSII和PSI功能产生补偿现象, 其PSII反应中心开放程度(qP)、PSII和PSI光化学量子产量((Y(II)和(Y(I))在进入初春升温期(2023年3月)后可迅速恢复至高于秋季(2022年10月)的水平。荷花木兰阳生叶PSII和PSI功能在冬季持续下降, 但采用了增强CEF-PSI和保持相对较强的热耗散能力的光保护策略以维持PSII和PSI功能的协同性。而冬季的雅榕阳生叶虽然CEF-PSI得到增强, 但热耗散能力大幅下降, 低温强光对PSII和PSI造成严重伤害。亚热带冬季低温并未对3种植物阴生叶造成明显光抑制伤害。冬季的红叶石楠和荷花木兰阴生叶仅PSI发生轻微可逆光抑制, 其中红叶石楠主要通过部分关闭PSII反应中心以减少光能吸收和维持相对较高的光化学能力的光保护机制, 而荷花木兰则主要采用增强CEF-PSI与热耗散能力的光保护机制。冬季低温虽然降低了雅榕阴生叶热耗散能力, 但其PSII和PSI功能并未受到明显影响, 冬季低温仅导致雅榕阴生叶PSII和PSI轻微可逆光抑制。该研究结果表明, 3种常绿植物冬季光抑制程度与植物的耐冷性呈负相关关系, 且主要决定于阳生叶对冬季低温强光的耐性; 耐冷性强的植物在越冬期具有相对较强的热耗散和CEF-PSI光保护途径, 并能维持PSII和PSI功能的协同性。
闫小红, 胡文海. 亚热带地区3种常绿阔叶植物冬季光保护机制的差异. 植物生态学报, 2025, 49(6): 952-964. DOI: 10.17521/cjpe.2024.0258
YAN Xiao-Hong, HU Wen-Hai. Differences in photoprotective mechanisms during winter in three evergreen broadleaf species in subtropical region. Chinese Journal of Plant Ecology, 2025, 49(6): 952-964. DOI: 10.17521/cjpe.2024.0258
图1 实验期间日最高气温与最低气温的变化。箭头所指黑框代表测量时间点。
Fig. 1 Changes in daily maximum and minimum air temperature during experimental period. The black boxes pointed by the arrow indicate the time of measurement.
图2 越冬期3种常绿阔叶植物光系统II最大光化学效率(Fv/Fm)和光系统I反应中心P700最大荧光信号(Pm)的变化(平均值±标准误, n = 5)。柱状图上方不同小写字母表示两者间在0.05水平上差异显著。
Fig. 2 Changes in the maximum quantum yield of photosystem II (Fv/Fm) and the maximum fluorescence signal of the P700 reaction center (Pm) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
图3 越冬期3种常绿阔叶植物通过光系统II和光系统I的电子传递速率(ETR)快速光曲线(平均值±标准误, n = 5)。PAR, 光合有效辐射。
Fig. 3 Rapid light curves of electron transport rate (ETR) of photosystem II and photosystem I in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). PAR, photosynthetically active radiation; SH, shade-leaf; SU, sun-leaf.
参数 Parameter | 种类 Species | 阴生叶 Shade-leaf | 阳生叶 Sun-leaf | ||||
---|---|---|---|---|---|---|---|
秋季 Autumn | 冬季 Winter | 春季 Spring | 秋季 Autumn | 冬季 Winter | 春季 Spring | ||
Jmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 46.6 ± 6.7Ac | 36.6 ± 5.7Acd | 38.0 ± 2.4Acd | 64.9 ± 3.4Ab | 27.6 ± 1.0Ad | 98.8 ± 3.6Aa |
荷花木兰 M. grandiflora | 40.4 ± 4.0Aa | 25.7 ± 3.9ABb | 11.7 ± 1.0Cc | 38.7 ± 2.0Ba | 10.9 ± 2.9Bc | 7.3 ± 0.8Cc | |
雅榕 F. concinna | 26.4 ± 2.7Bb | 18.3 ± 1.5Bc | 21.4 ± 1.1Bbc | 43.0 ± 2.1Ba | 3.2 ± 0.9Cd | 18.8 ± 2.1Bc | |
Jmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 77.5 ± 7.9Ac | 57.1 ± 6.3Ad | 63.1 ± 3.1Acd | 107.6 ± 6.2Ab | 48.4 ± 1.3Ad | 177.4 ± 6.1Aa |
荷花木兰 M. grandiflora | 73.3 ± 6.9Aa | 44.2 ± 5.1ABb | 23.9 ± 1.4Cc | 73.6 ± 4.6Ba | 27.3 ± 4.0Bc | 19.1 ± 2.2Cc | |
雅榕 F. concinna | 48.7 ± 2.1Bbc | 41.3 ± 2.2Bbc | 50.1 ± 3.0Bb | 82.3 ± 3.9Ba | 25.5 ± 2.5Bd | 39.7 ± 5.1Bc | |
PARmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 703 ± 53Acd | 750 ± 83Abc | 648 ± 41Acd | 871 ± 26Ab | 577 ± 15Ad | 1 343 ± 47Aa |
荷花木兰 M. grandiflora | 646 ± 57Aa | 473 ± 30Bb | 263 ± 16Bc | 672 ± 62Aa | 390 ± 49Bbc | 265 ± 39Cc | |
雅榕 F. concinna | 576 ± 20Ab | 542 ± 21Bb | 706 ± 122Aab | 866 ± 138Aa | 237 ± 21Cc | 599 ± 124Bab | |
PARmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 1 030 ± 8Abc | 857 ± 68Acd | 1 200 ± 147Aab | 1 037 ± 57Ab | 696 ± 32Ad | 1 290 ± 35Aa |
荷花木兰 M. grandiflora | 1 083 ± 47Aa | 731 ± 80Ac | 344 ± 26Bde | 891 ± 43Ab | 417 ± 34Bd | 241 ± 42Ce | |
雅榕 F. concinna | 787 ± 54Bb | 675 ± 38Ab | 1 118 ± 178Aa | 906 ± 52Aab | 299 ± 35Cc | 493 ± 28Bc |
表1 越冬期3种常绿阔叶植物通过光系统II和光系统I的最大光合电子流(Jmax)和饱和光强(PARsat) (平均值±标准误, n = 5)
Table 1 The maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of photosystem II and photosystem I in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5)
参数 Parameter | 种类 Species | 阴生叶 Shade-leaf | 阳生叶 Sun-leaf | ||||
---|---|---|---|---|---|---|---|
秋季 Autumn | 冬季 Winter | 春季 Spring | 秋季 Autumn | 冬季 Winter | 春季 Spring | ||
Jmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 46.6 ± 6.7Ac | 36.6 ± 5.7Acd | 38.0 ± 2.4Acd | 64.9 ± 3.4Ab | 27.6 ± 1.0Ad | 98.8 ± 3.6Aa |
荷花木兰 M. grandiflora | 40.4 ± 4.0Aa | 25.7 ± 3.9ABb | 11.7 ± 1.0Cc | 38.7 ± 2.0Ba | 10.9 ± 2.9Bc | 7.3 ± 0.8Cc | |
雅榕 F. concinna | 26.4 ± 2.7Bb | 18.3 ± 1.5Bc | 21.4 ± 1.1Bbc | 43.0 ± 2.1Ba | 3.2 ± 0.9Cd | 18.8 ± 2.1Bc | |
Jmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 77.5 ± 7.9Ac | 57.1 ± 6.3Ad | 63.1 ± 3.1Acd | 107.6 ± 6.2Ab | 48.4 ± 1.3Ad | 177.4 ± 6.1Aa |
荷花木兰 M. grandiflora | 73.3 ± 6.9Aa | 44.2 ± 5.1ABb | 23.9 ± 1.4Cc | 73.6 ± 4.6Ba | 27.3 ± 4.0Bc | 19.1 ± 2.2Cc | |
雅榕 F. concinna | 48.7 ± 2.1Bbc | 41.3 ± 2.2Bbc | 50.1 ± 3.0Bb | 82.3 ± 3.9Ba | 25.5 ± 2.5Bd | 39.7 ± 5.1Bc | |
PARmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 703 ± 53Acd | 750 ± 83Abc | 648 ± 41Acd | 871 ± 26Ab | 577 ± 15Ad | 1 343 ± 47Aa |
荷花木兰 M. grandiflora | 646 ± 57Aa | 473 ± 30Bb | 263 ± 16Bc | 672 ± 62Aa | 390 ± 49Bbc | 265 ± 39Cc | |
雅榕 F. concinna | 576 ± 20Ab | 542 ± 21Bb | 706 ± 122Aab | 866 ± 138Aa | 237 ± 21Cc | 599 ± 124Bab | |
PARmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 1 030 ± 8Abc | 857 ± 68Acd | 1 200 ± 147Aab | 1 037 ± 57Ab | 696 ± 32Ad | 1 290 ± 35Aa |
荷花木兰 M. grandiflora | 1 083 ± 47Aa | 731 ± 80Ac | 344 ± 26Bde | 891 ± 43Ab | 417 ± 34Bd | 241 ± 42Ce | |
雅榕 F. concinna | 787 ± 54Bb | 675 ± 38Ab | 1 118 ± 178Aa | 906 ± 52Aab | 299 ± 35Cc | 493 ± 28Bc |
参数 Parameters | F | ||
---|---|---|---|
光环境 Light (L) | 季节 Season (S) | 光环境×季节 L × S | |
红叶石楠 Photinia × fraseri | |||
Jmax-ETR(II) | 45.552*** | 37.758*** | 34.486*** |
PARsat-ETR(II) | 32.514*** | 23.160*** | 39.240*** |
Jmax-ETR(I) | 97.833*** | 73.389*** | 62.978*** |
PARsat-ETR(I) | 0.131 | 20.772*** | 1.546 |
荷花木兰 Magnolia grandiflora | |||
Jmax-ETR(II) | 9.766** | 63.541*** | 3.157 |
PARsat-ETR(II) | 0.248 | 38.768*** | 0.821 |
Jmax-ETR(I) | 3.890 | 73.700*** | 2.000 |
PARsat-ETR(I) | 26.515*** | 104.589*** | 2.386 |
雅榕 Ficus concinna | |||
Jmax-ETR(II) | 0.067 | 87.579*** | 38.051*** |
PARsat-ETR(II) | 0.301 | 7.249** | 5.450* |
Jmax-ETR(I) | 0.855 | 48.547*** | 33.699*** |
PARsat-ETR(I) | 18.953*** | 11.339*** | 10.526*** |
表2 光环境和季节变化对3种常绿阔叶植物最大光合电子流(Jmax)和饱和光强(PARsat)的影响
Table 2 Influences of light environment and season variation on the maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of three evergreen broadleaf plants
参数 Parameters | F | ||
---|---|---|---|
光环境 Light (L) | 季节 Season (S) | 光环境×季节 L × S | |
红叶石楠 Photinia × fraseri | |||
Jmax-ETR(II) | 45.552*** | 37.758*** | 34.486*** |
PARsat-ETR(II) | 32.514*** | 23.160*** | 39.240*** |
Jmax-ETR(I) | 97.833*** | 73.389*** | 62.978*** |
PARsat-ETR(I) | 0.131 | 20.772*** | 1.546 |
荷花木兰 Magnolia grandiflora | |||
Jmax-ETR(II) | 9.766** | 63.541*** | 3.157 |
PARsat-ETR(II) | 0.248 | 38.768*** | 0.821 |
Jmax-ETR(I) | 3.890 | 73.700*** | 2.000 |
PARsat-ETR(I) | 26.515*** | 104.589*** | 2.386 |
雅榕 Ficus concinna | |||
Jmax-ETR(II) | 0.067 | 87.579*** | 38.051*** |
PARsat-ETR(II) | 0.301 | 7.249** | 5.450* |
Jmax-ETR(I) | 0.855 | 48.547*** | 33.699*** |
PARsat-ETR(I) | 18.953*** | 11.339*** | 10.526*** |
图4 越冬期3种常绿阔叶植物光化学猝灭(qP)、非光化学猝灭(NPQ)和围绕光系统I的环式电子传递(CEF-PSI)的变化(平均值±标准误, n = 5)。柱状图上方不同小写字母表示两者间在0.05水平上差异显著。
Fig. 4 Changes in the photochemical quenching (qP), non-photochemical quenching (NPQ), and the cyclic electron flow around photosystem I (CEF-PSI) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
图5 越冬期3种常绿阔叶植物光系统II (PSII)能量分配的变化(平均值±标准误, n = 5)。Y(II), PSII实际光化学量子产量; Y(NO), PSII非调节性能量耗散的量子产量; Y(NPQ), PSII调节性能量耗散的量子产量。柱状图上方不同小写字母表示两者间在0.05水平上差异显著。
Fig. 5 Changes in the energy partitioning of photosystem II (PSII) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). Y(II), effective PSII quantum; Y(NO), quantum yield of nonregulation energy dissipation; Y(NPQ), quantum yield of regulated energy dissipation. The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
图6 越冬期3种常绿阔叶植物光系统I (PSI)能量分配的变化(平均值±标准误, n = 5)。Y(I), PSI光化学量子产量; Y(NA), PSI受体侧限制引起的非光化学量子产量; Y(ND), PSI供体侧限制引起的热耗散量子产量。柱状图上方不同小写字母表示两者间在0.05水平上差异显著。
Fig. 6 Changes in the energy partitioning of photosystem I (PSI) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). Y(I), effective quantum yield of PSI; Y(NA), quantum yield of PSI non-photochemical energy dissipation due to acceptor; Y(ND), heat dissipation efficiency at the donors quantum yield of PSI. The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
[1] | Adams III WW, Zarter CR, Ebbert V, Demmig-Adams B (2004). Photoprotective strategies of overwintering evergreens. BioScience, 54, 41-49. |
[2] | Arora R, Krebs SL, Wisniewski ME (2021). The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F1 hybrid. American Journal of Botany, 108, 1946-1956. |
[3] | Barth C, Krause GH (1999). Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. Zeitschrift Für Naturforschung C, 54, 645-657. |
[4] |
Chen XP, Li JL, Peñuelas J, Li XQ, Hu DD, Wang MT, Zhong QL, Cheng DL (2024). Temperature dependence of carbon metabolism in the leaves in sun and shade in a subtropical forest. Oecologia, 204, 59-69.
DOI PMID |
[5] | Demmig-Adams B, Adams III WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626. |
[6] | Grebe S, Trotta A, Bajwa AA, Mancini I, Bag P, Jansson S, Tikkanen M, Aro EM (2020). Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 17499-17509. |
[7] |
Harbinson J, Genty B, Baker NR (1989). Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiology, 90, 1029-1034.
DOI PMID |
[8] |
Havaux M, Davaud A (1994). Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem-II activity—Preferential inactivation of photosystem I. Photosynthesis Research, 40, 75-92.
DOI PMID |
[9] |
Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81.
DOI PMID |
[10] | Hu WH, Xiao YA, Yan XH, Ye ZP, Zeng JJ, Li XH (2021). Photoprotective mechanisms under low temperature and high light stress of Photinia × fraseri and Osmanthus fragrans during overwintering. Bulletin of Botanical Research, 41, 938-946. |
[胡文海, 肖宜安, 闫小红, 叶子飘, 曾建军, 李晓红 (2021). 越冬期红叶石楠和桂花防御低温强光伤害的光保护机制. 植物研究, 41, 938-946.]
DOI |
|
[11] |
Hu XH, Liu NN, Tao HM, Peng KJ, Xia XJ, Hu WH (2022). Effects of chilling on chlorophyll fluorescence imaging characteristics of leaves with different leaf ages in tomato seedlings. Scientia Agricultura Sinica, 55, 4969-4980.
DOI |
[胡雪华, 刘宁宁, 陶慧敏, 彭可佳, 夏晓剑, 胡文海 (2022). 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响. 中国农业科学, 55, 4969-4980.]
DOI |
|
[12] | Hu XH, Yuan QY, Zhan MY, Zhou SY, Hu WH (2023). Effects of low temperature in winter on photoinhibition of sun leaves and shade leaves in three evergreen broad-leaved plants. Journal of Plant Resources and Environment, 32(2), 65-72. |
[胡雪华, 袁晴雨, 詹明悦, 周水云, 胡文海 (2023). 冬季低温对3种常绿阔叶植物阳生叶和阴生叶光抑制的影响. 植物资源与环境学报, 32(2), 65-72.] | |
[13] |
Huang W, Hu H, Zhang SB (2016). Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter. Frontiers in Plant Science, 7, 1511. DOI: 10.3389/fpls.2016.01511.
PMID |
[14] | Huang W, Zhang SB, Cao KF (2012). Physiological role of cyclic electron flow in higher plants. Plant Science Journal, 30(1), 100-106. |
[黄伟, 张石宝, 曹坤芳 (2012). 高等植物环式电子传递的生理作用. 植物科学学报, 30(1), 100-106.] | |
[15] |
Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardestrom P, Huner NPA, Öquist G (2001). Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta, 213, 575-585.
PMID |
[16] | Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016). Where, why and how? Explaining the low-temperature range limits of temperate tree species. Journal of Ecology, 104, 1076-1088. |
[17] | Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP (2020). Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. The Plant Journal, 103, 2279-2300. |
[18] | Liu YM, Liu YX, Zeng GX, Huang XG (2015). Climatic regionalization of Jinggang pomelo planting in Ji’an area based on GIS. Acta Agriculturae Jiangxi, 27(6), 130-133. |
[刘云萌, 刘云霞, 曾广旭, 黄祥光 (2015). 基于GIS的吉安地区井冈蜜柚特色果业种植气候区划. 江西农业学报, 27(6), 130-133.] | |
[19] | Míguez F, Fernández-Marín B, Becerril JM, García-Plazaola JI (2015). Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and meta-analysis. Physiologia Plantarum, 155, 414-423. |
[20] |
Niinemets Ü, Keenan TF, Hallik L (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205, 973-993.
DOI PMID |
[21] |
Öquist G, Huner NPA (2003). Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology, 54, 329-355.
PMID |
[22] | Peng JG, Jiang XR, Jia MX, Guo L, Gao RF, Liu Y (2016). Contrasting patterns of sun-red and shade-green leaves of Buxus microphylla in response to gradients of excess light during winter acclimation. Acta Physiologiae Plantarum, 38, 254. |
[23] |
Porcar-Castell A, Juurola E, Ensminger I, Berninger F, Hari P, Nikinmaa E (2008). Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Tree Physiology, 28, 1483-1491.
PMID |
[24] | Ren LL, Gao HY (2007). Effects of chilling stress under weak light on functions of photosystems in leaves of wild soybean and cultivator soybean. Journal of Plant Physiology and Molecular Biology, 33, 333-340. |
[任丽丽, 高辉远 (2007). 低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响. 植物生理与分子生物学学报, 33, 333-340.] | |
[25] | Shi SB, Zhou DW, Li TC, De KJ, Gao XZ, Ma JL, Sun T, Wang FL (2023). Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 47, 361-373. |
[师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳 (2023). 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 47, 361-373.]
DOI |
|
[26] | Short AW, Sebastian JS, Huang J, Wang GN, Dassanayake M, Finnegan PM, Parker JD, Cao KF, Wee AKS (2024). Comparative transcriptomics of the chilling stress response in two Asian mangrove species Bruguiera gymnorhiza and Rhizophora apiculate. Tree Physiology, 44, tpae019. DOI: 10.1093/treephys/tpae019/7608779. |
[27] | Sonoike K (1999). The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. Journal of Photochemistry and Photobiology B: Biology, 48, 136-141. |
[28] | Sperlich D, Chang CT, Peñuelas J, Gracia C, Sabaté S (2014). Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain). Biogeosciences, 11, 5657-5674. |
[29] |
Takahashi S, Badger MR (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16, 53-60.
DOI PMID |
[30] |
Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009). How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology, 149, 1560-1567.
DOI PMID |
[31] | Tang Y, Wang CK (2011). A feasible method for measuring photosynthesis in vitro for major tree species in northeastern China. Chinese Journal of Plant Ecology, 35, 452-462. |
[唐艳, 王传宽 (2011). 东北主要树种光合作用可行的离体测定方法. 植物生态学报, 35, 452-462.]
DOI |
|
[32] | Terashima I, Funayama S, Sonoike K (1994). The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193, 300-306. |
[33] | Verhoeven A (2014). Sustained energy dissipation in winter evergreens. New Phytologist, 201, 57-65. |
[34] | Walter-McNeill A, Garcia MA, Logan BA, Bombard DM, Reblin JS, Lopez S, Southwick CD, Sparrow EL, Bowling DR (2021). Wide variation of winter-induced sustained thermal energy dissipation in conifers: a common-garden study. Oecologia, 197, 589-598. |
[35] |
Xiao F, Yang YL, Wang YT, Ma H, Zhang WF (2017). Effects of low temperature on PSI and PSII photoinhibition in cotton leaf at boll stage. Acta Agronomica Sinica, 43, 1401-1409.
DOI |
[肖飞, 杨延龙, 王娅婷, 马慧, 张旺锋 (2017). 棉花花铃期低温对叶片PSI和PSII光抑制的影响. 作物学报, 43, 1401-1409.]
DOI |
|
[36] | Yan XH, Fu YJ, Hu WH (2025). Responses of photosystem II function of three evergreen broadleaf species to transient warming at winter in subtropical region. Chinese Journal of Plant Ecology, 49, 331-342. |
[闫小红, 傅英健, 胡文海 (2025). 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应. 植物生态学报, 49, 331-342.]
DOI |
|
[37] | Ye ZP, Robakowski P, Suggett DJ (2013). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847. |
[38] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[39] | Zhang ZS, Yang C, Gao HY (2013). Chilling photoinhibition of photosystem I and its recovery after photoinhibition. Plant Physiology Journal, 49, 301-308. |
[张子山, 杨程, 高辉远 (2013). 植物光系统I的低温光抑制及恢复. 植物生理学报, 49, 301-308.] | |
[40] | Zhang ZS, Zhang LT, Gao HY, Jia YJ, Bu JW, Meng QW (2009). Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Scientia Agricultura Sinica, 42, 4288-4293. |
[张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟 (2009). 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 42, 4288-4293.] |
[1] | 邱丹妮, 彭清清, 张慧玲, 温辉辉, 吴福忠. 中亚热带常绿阔叶林典型乔木树种对蚂蚁群落季节性动态的影响[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[2] | 闫小红, 傅英健, 胡文海. 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应[J]. 植物生态学报, 2025, 49(2): 331-342. |
[3] | 冉佳鑫, 张宇辉, 王云, 杨智杰, 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 1232-1242. |
[4] | 刘士玲, 杨保国, 郑路, 舒韦维, 闵惠琳, 张培, 李华, 杨坤, 周炳江, 田祖为. 广西红锥人工林径向生长的季节格局及其对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 1021-1034. |
[5] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[6] | 兰光飞, 张强, 陈相标, 陈仕东, 熊德成, 刘小飞, 杨智杰, 杨玉盛. 中亚热带格氏栲林凋落物季节动态特征及其影响因素[J]. 植物生态学报, 2024, 48(12): 1589-1601. |
[7] | 陆啸飞, 覃张芬, 王斌, 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响[J]. 植物生态学报, 2024, 48(10): 1302-1311. |
[8] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[9] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[10] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[11] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[12] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[13] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[14] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[15] | 牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子[J]. 植物生态学报, 2021, 45(2): 131-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19