植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1156-1162.DOI: 10.17521/cjpe.2024.0309 cstr: 32100.14.cjpe.2024.0309
收稿日期:
2024-09-12
接受日期:
2024-12-10
出版日期:
2025-07-20
发布日期:
2025-03-25
通讯作者:
*李鹏民, E-mail: lipm@nwafu.edu.cn基金资助:
ZHANG Wen-Ting, ZHANG Guo-Yun, PEI Guo-Liang, LI Peng-Min*()
Received:
2024-09-12
Accepted:
2024-12-10
Online:
2025-07-20
Published:
2025-03-25
Supported by:
摘要:
枇杷(Eriobotrya japonica)属于常绿乔木植物, 在冬季由于低温胁迫易发生光抑制或光破坏, 进而影响其生长。该研究利用叶绿素荧光和820 nm光反射同步测量技术, 比较了冬季枇杷叶片两个光系统光抑制的差异。由秋入冬后, 枇杷叶片光系统II (PSII)最大量子效率(Fv/Fm)显著下降, 但PSII供体侧和受体侧的光合电子传递能力不变, 光系统I (PSI)活性没有变化; PSII和PSI的实际光化学效率(ΦPSII和ΦPSI)均显著下降, 非光化学猝灭(NPQ)在强光下显著下降。由冬入春后, 枇杷叶片Fv/Fm显著升高, PSII受体侧的电子传递能力和PSI活性下降。并且, ΦPSII显著上升, 而ΦPSI保持不变, NPQ在强光下显著升高。这表明, 冬季低温胁迫下, 枇杷叶片PSI的光抑制发生比PSII晚, 且恢复较慢。PSII光抑制发生较早, 其活性恢复也较早。
张雯婷, 张国云, 裴国亮, 李鹏民. 利用叶绿素荧光和820 nm光反射同步测量揭示枇杷叶片PSII和PSI冬季光抑制差异. 植物生态学报, 2025, 49(7): 1156-1162. DOI: 10.17521/cjpe.2024.0309
ZHANG Wen-Ting, ZHANG Guo-Yun, PEI Guo-Liang, LI Peng-Min. Different photoinhibition of PSII and PSI in Eriobotrya japonica leaves in winter revealed by simultaneous measurements of chlorophyll fluorescence and 820 nm light reflection. Chinese Journal of Plant Ecology, 2025, 49(7): 1156-1162. DOI: 10.17521/cjpe.2024.0309
图1 不同季节枇杷叶片叶绿素荧光诱导动力学(A)和820 nm光反射动力学曲线(B)。图中每条曲线为5次测定的平均值。MR0, 820 nm光反射起始点; MRmin, 820 nm光反射最小值; MRmax, 820 nm光反射最大值。
Fig. 1 Induction kinetics of chlorophyll a fluorescence (A) and 820 nm reflection (B) in Eriobotrya japonica leaves growing in different seasons. Each curve was the average of five replicates. MR0, initial point of 820 nm reflection; MRmin, minimum of 820 nm reflection; MRmax, maximum of 820 nm reflection.
图2 不同季节枇杷叶片叶绿素荧光诱导动力学(A)和820 nm光反射动力学(B)参数(平均值±标准误, n = 5)。不同小写字母表示同一参数在不同季节具有显著差异(p < 0.05, LSD)。Fv/Fm, PSII最大量子效率; Wk, K点可变荧光; Vi, I点可变荧光; Vj, J点可变荧光; VPSI, 820 nm光反射最大下降斜率; VPSII-PSI, 820 nm光反射最大上升斜率。
Fig. 2 Parameters derived from chlorophyll a fluorescence (A) and 820 nm reflection (B) kinetics in Eriobotrya japonica leaves growing in different seasons (mean ± SE, n = 5). Different lowercase letters above the bars indicate significant difference for same parameter among different seasons (p < 0.05, LSD). Fv/Fm, maximum quantum yield of PSII; Wk, relative variable fluorescence at K-step; Vi, relative variable fluorescence at I-step; Vj, relative variable fluorescence at J-step; VPSI, maximum decrease slope of 820 nm reflection; VPSII-PSI, maximum increase slope of 820 nm reflection.
图3 不同季节枇杷叶片光下两个光系统的实际光化学效率及热耗散(平均值±标准误, n = 5)。ΦPSII, 光系统II实际光化学效率; ΦPSI, 光系统I实际光化学效率; NPQ, 非光化学猝灭; PPFD, 光合光通量密度。
Fig. 3 Actual photochemical efficiencies of two photosystems and non-photochemical quenching in Eriobotrya japonica leaves under light conditions in different seasons (mean ± SE, n = 5). ΦPSII, actual photochemical efficiency of PSII; ΦPSI, actual photochemical efficiency of PSI; NPQ, non-photochemical quenching; PPFD, photosynthetic photon flux density.
[1] |
Chen LS, Li PM, Cheng LL (2008). Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta, 228, 745-756.
DOI PMID |
[2] | Cheng DM, Zhang ZY, Zhou SX, Peng YS, Zhang ZX (2019). Photoinhibition and recovery of photosystem II of three broad-leaved evergreens under low temperature stress. Guihaia, 39, 1666-1672. |
[程冬梅, 张志勇, 周赛霞, 彭焱松, 张兆祥 (2019). 三种常绿阔叶树光系统II在低温胁迫下的光抑制及恢复. 广西植物, 39, 1666-1672.] | |
[3] | Feng YL, Cao KF, Feng ZL (2004). Effects of nocturnal chilling temperature on chlorophyll fluorescence parameters in seedlings of two ravine rainforest species grown under different light intensities. Acta Phytoecologica Sinica, 28, 150-156. |
[冯玉龙, 曹坤芳, 冯志立 (2004). 夜间低温对不同光强下生长的两种沟谷雨林树苗荧光参数的影响. 植物生态学报, 28, 150-156.]
DOI |
|
[4] | Gao J, Li P, Ma F, Goltsev V (2014). Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. Journal of Photochemistry and Photobiology B: Biology, 137, 144-150. |
[5] | Jin LQ, Che XK, Zhang ZS, Gao HY (2015). The relationship between the changes in Wk and different damage degree of PSII donor side and acceptor side under high temperature with high light in cucumber. Plant Physiology Journal, 51, 969-976. |
[金立桥, 车兴凯, 张子山, 高辉远 (2015). 高温、强光下黄瓜叶PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 51, 969-976.] | |
[6] |
Krieger-Liszkay A (2005). Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 56, 337-346.
PMID |
[7] | Li PM, Gao HY, Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566. |
[李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[8] |
Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L (2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 38, 720-728.
DOI |
[李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 (2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.]
DOI |
|
[9] | Luo J, Ding XY, Xu YN, Wang JY, Zhang Q, Sun S, Li YT, Gao HY, Zhang ZS (2022). Effects of growth light intensity on the activity of photosystem in cucumber leaves. Plant Physiology Journal, 58, 1790-1800. |
[罗蛟, 丁新宇, 徐燕妮, 王俊彦, 张强, 孙山, 李玉婷, 高辉远, 张子山 (2022). 生长光强对黄瓜叶片光合机构活性影响研究. 植物生理学报, 58, 1790-1800.] | |
[10] | Luo J, Li Y, Li YT, Zhao WJ, Xu YN, Zhao SJ, Zhang ZS, Gao HY (2021). Effects of six plant growth regulators on photoinhibition of photosystem II and photosystem I in in vitro Cucumis sativus leaves under light and temperature stress. Plant Physiology Journal, 57, 178-186. |
[罗蛟, 李滢, 李玉婷, 赵文静, 徐燕妮, 赵世杰, 张子山, 高辉远 (2021). 六种植物生长调节剂对光温胁迫下离体黄瓜叶片光系统II和光系统I光抑制的影响. 植物生理学报, 57, 178-186.] | |
[11] | Mattila H, Tyystjärvi E (2022). Light-induced damage to photosystem II at a very low temperature (195 K) depends on singlet oxygen. Physiologia Plantarum, 174, e13824. DOI: 10.1111/ppl.13824. |
[12] | Ren LL, Gao HY (2007). Effects of chilling stress under weak light on functions of photosystems in leaves of wild soybean and cultivar soybean. Journal of Plant Physiology and Molecular Biology, 33, 333-340. |
[任丽丽, 高辉远 (2007). 低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响. 植物生理与分子生物学学报, 33, 333-340.] | |
[13] |
Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916.
DOI PMID |
[14] |
Schansker G, Srivastava A, Govindjee, Strasser RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30, 785-796.
DOI PMID |
[15] | Schansker G, Tóth SZ, Strasser RJ (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1706, 250-261. |
[16] | Sonoike K (2011). Photoinhibition of photosystem I. Physiologia Plantarum, 142, 56-64. |
[17] |
Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016). Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171, 1626-1634.
DOI PMID |
[18] |
Takahashi S, Murata N (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13, 178-182.
DOI PMID |
[19] | Terashima I, Funayama S, Sonoike K (1994). The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193, 300-306. |
[20] | Tóth SZ, Schansker G, Strasser RJ (2005). In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1708, 275-282. |
[21] | Velitchkova M, Popova AV, Faik A, Gerganova M, Ivanov AG (2020). Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana. Physiologia Plantarum, 170, 93-108. |
[22] | Wu HM, Shuang SP, Zhang JY, Cun Z, Meng ZG, Li LG, Sha BC, Chen JW (2021). Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity. Chinese Journal of Plant Ecology, 45, 404-419. |
[武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文 (2021). 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制. 植物生态学报, 45, 404-419.]
DOI |
|
[23] | Zhang WT, Li PM (2024). A method for simultaneously measuring the actual photochemical efficiency of two light systems in plants under light. Plant Physiology Journal, 60, 1833-1840. |
[张雯婷, 李鹏民 (2024). 一种同步测量植物两个光系统光下实际光化学效率的方法. 植物生理学报, 60, 1833-1840.] | |
[24] | Zhang WT, Li PM (2015). Application of simultaneous measurement of prompt and delayed chlorophyll fluorescence and the 820 nm reflection kinetics in photosynthesis study. Acta Biophysica Sinica, 31, 221-229. |
[张雯婷, 李鹏民 (2015). 瞬时与延迟叶绿素荧光及820 nm光反射动力学同步测量技术在光合作用研究中的应用. 生物物理学报, 31, 221-229.] | |
[25] | Zhang WT, Zhang GY, Pei GL, Li PM (2024). Comparison of phytochemistry capacity between fruit peel and leaf using simultaneous measurements of prompt fluorescence, delayed fluorescence and 820 nm light reflection. Plant Physiology Journal, 60, 887-894. |
[张雯婷, 张国云, 裴国亮, 李鹏民 (2024). 利用瞬时和延迟荧光及820 nm光反射同步测量技术比较果皮与叶片的原初光化学反应能力. 植物生理学报, 60, 887-894.] | |
[26] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[27] | Zhang ZS, Yang C, Gao HY (2013). Chilling photoinhibition of photosystem I and its recovery after photoinhibition. Plant Physiology Journal, 49, 301-308. |
[张子山, 杨程, 高辉远 (2013). 植物光系统I的低温光抑制及恢复. 植物生理学报, 49, 301-308.] |
[1] | 闫小红, 胡文海. 亚热带地区3种常绿阔叶植物冬季光保护机制的差异[J]. 植物生态学报, 2025, 49(6): 952-964. |
[2] | 闫小莉, 刘贵梅, 李小玉, 江宇翔, 全小强, 王燕茹, 曲鲁平, 汤行昊. 不同氮添加水平和铵硝态氮配比环境下木荷幼苗光合及叶绿素荧光特性[J]. 植物生态学报, 2025, 49(4): 624-637. |
[3] | 王贝贝, 吴苏, 王苗苗, 胡锦涛. 日光诱导叶绿素荧光不同组分在作物总初级生产力估算中的贡献比例: 多时间尺度分析[J]. 植物生态学报, 2025, 49(4): 562-572. |
[4] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
[5] | 闫小红, 傅英健, 胡文海. 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应[J]. 植物生态学报, 2025, 49(2): 331-342. |
[6] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[7] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[8] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[9] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[10] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[11] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[12] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[13] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[14] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[15] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19