植物生态学报 ›› 2009, Vol. 33 ›› Issue (6): 1023-1033.DOI: 10.3773/j.issn.1005-264x.2009.06.002
所属专题: 生态系统碳水能量通量
邓琦1,2, 周国逸1, 刘菊秀1, 刘世忠1, 段洪浪1,2, 陈小梅1,2, 张德强1,*()
收稿日期:
2009-03-06
接受日期:
2009-06-25
出版日期:
2009-03-06
发布日期:
2009-11-30
通讯作者:
张德强
作者简介:
*(zhangdeq@scib.ac.cn)基金资助:
DENG Qi1,2, ZHOU Guo-Yi1, LIU Ju-Xiu1, LIU Shi-Zhong1, DUAN Hong-Lang1,2, CHEN Xiao-Mei1,2, ZHANG De-Qiang1,*()
Received:
2009-03-06
Accepted:
2009-06-25
Online:
2009-03-06
Published:
2009-11-30
Contact:
ZHANG De-Qiang
摘要:
土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m-2·a-1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。
邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强. CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响. 植物生态学报, 2009, 33(6): 1023-1033. DOI: 10.3773/j.issn.1005-264x.2009.06.002
DENG Qi, ZHOU Guo-Yi, LIU Ju-Xiu, LIU Shi-Zhong, DUAN Hong-Lang, CHEN Xiao-Mei, ZHANG De-Qiang. EFFECTS OF CO<sub>2</sub> ENRICHMENT, HIGH NITROGEN DEPOSITION AND HIGH PRECIPITATION ON A MODEL FOREST ECOSYSTEM IN SOUTHERN CHINA. Chinese Journal of Plant Ecology, 2009, 33(6): 1023-1033. DOI: 10.3773/j.issn.1005-264x.2009.06.002
图1 不同处理下土壤呼吸速率和环境因子的季节动态 CC: CO2浓度倍增((700±20) μmol CO2·mol-1)+背景N沉降 CO2 enrichment ((700±20) μmol CO2·mol-1)+ambient N deposition CO: 背景CO2浓度+背景N沉降 Ambient CO2concentration+ambient N deposition NN: 高N沉降(100 kg N·hm-2·a-1)+背景CO2浓度 High N deposition (100 kg N·hm-2·a-1)+ambient CO2concentration HR: 高降雨 High precipitation (100 L H2O)
Fig. 1 Seasonal dynamics of soil respiration rate and environmental factors under different treatments
处理 Treatment | 时间 Time | CC | NN | HR | CO |
---|---|---|---|---|---|
土壤呼吸速率 Soil respiration rate (μmol CO2·m-2·s-1) | 雨季 Wet season | 3.85±1.00a* | 3.19±0.80b* | 2.66±0.88c | 2.71±0.70c* |
旱季 Dry season | 2.23±0.47ab* | 1.80±0.44c* | 2.32±0.57a | 2.05±0.42b* | |
年平均值 Annual mean value | 3.06±1.13a | 2.46±0.91b | 2.49±0.66b | 2.39±0.76b | |
土壤温度 Soil temperature (℃) | 雨季 Wet season | 24.81±2.99a* | 25.10±2.87a* | 25.22±2.71a* | 25.26±2.80a* |
旱季 Dry season | 17.21±4.08a* | 17.70±4.20a* | 17.23±4.03a* | 17.26±4.11a* | |
年平均值 Annual mean value | 21.05±5.22a | 21.50±5.44a | 21.16±5.25a | 21.38±5.04a | |
土壤湿度 Soil moisture (%) | 雨季 Wet season | 25.03±4.60a* | 22.26±4.96b* | 25.76±5.16a* | 23.64±4.82ab* |
旱季 Dry season | 19.34±3.64a* | 15.01±3.84c* | 19.75±3.50a* | 17.03±3.95b* | |
年平均值 Annual mean value | 22.25±5.03a | 18.71±5.73c | 20.41±5.50a | 22.83±5.34b |
表1 土壤呼吸速率和环境因子的处理间差异性(平均值±标准偏差)
Table 1 Differences in soil respiration rates and environmental factors under different treatments (mean±SD)
处理 Treatment | 时间 Time | CC | NN | HR | CO |
---|---|---|---|---|---|
土壤呼吸速率 Soil respiration rate (μmol CO2·m-2·s-1) | 雨季 Wet season | 3.85±1.00a* | 3.19±0.80b* | 2.66±0.88c | 2.71±0.70c* |
旱季 Dry season | 2.23±0.47ab* | 1.80±0.44c* | 2.32±0.57a | 2.05±0.42b* | |
年平均值 Annual mean value | 3.06±1.13a | 2.46±0.91b | 2.49±0.66b | 2.39±0.76b | |
土壤温度 Soil temperature (℃) | 雨季 Wet season | 24.81±2.99a* | 25.10±2.87a* | 25.22±2.71a* | 25.26±2.80a* |
旱季 Dry season | 17.21±4.08a* | 17.70±4.20a* | 17.23±4.03a* | 17.26±4.11a* | |
年平均值 Annual mean value | 21.05±5.22a | 21.50±5.44a | 21.16±5.25a | 21.38±5.04a | |
土壤湿度 Soil moisture (%) | 雨季 Wet season | 25.03±4.60a* | 22.26±4.96b* | 25.76±5.16a* | 23.64±4.82ab* |
旱季 Dry season | 19.34±3.64a* | 15.01±3.84c* | 19.75±3.50a* | 17.03±3.95b* | |
年平均值 Annual mean value | 22.25±5.03a | 18.71±5.73c | 20.41±5.50a | 22.83±5.34b |
图2 不同处理下土壤呼吸的年通量 (平均值±标准偏差) 不同小写字母表示差异达到p=0.05显著水平 Different lowercase letters indicate significant difference at p=0.05 level CC、CO、NN、HR: 见图1 See Fig. 1
Fig. 2 Annual soil CO2 efflux under different treatments (mean±SD)
图4 不同处理下土壤呼吸速率和土壤湿度(<15%)的相关性 CC、CO、NN、HR: 见图1 See Fig. 1
Fig. 4 Correlations between soil respiration rate and soil moisture (below 15%) under different treatments
[1] |
Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14,1156-1168.
DOI URL |
[2] |
Astrid RB, Giesemann A, Anderson TH, Weigel HJ, Buchmann N (2004). Soil respiration under elevated CO 2 and its partitioning into recently assimilated and older carbon sources. Plant and Soil, 262,85-94.
DOI URL |
[3] |
Bemtson GM, Bazzaz FA (1996). The influence of elevated CO 2 on the allometry of root production and root loss in Acer rubrurn and Betula pupyerifera. American Journal of Botany, 101,608-616.
DOI URL PMID |
[4] |
Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006). Long-term effects of free air CO 2 enrichment (FACE) on soil respiration. Biogeochemistry, 77,91-116.
DOI URL |
[5] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196,43-56.
DOI URL |
[6] | Cao YS (曹裕松), Li ZA (李志安), Fu SL (傅声雷), Zou B (邹碧), Ding YZ (丁永祯), Zhang WX (张卫信) (2006). Effects of simulated nitrogen deposition on carbon release from three plantation soils in Heshan. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition) (江西农业大学学报(自然科学版)), 28,101-105. (in Chinese with English abstract) |
[7] |
Casella E, Soussana JF (1997). Long-term effects of CO 2 enrichment and temperature increase on the carbon balance of a temperate grass sward. Journal of Experimental Botany, 48,1309-1321.
DOI URL |
[8] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹) (2003). Effects of water content on soil respiration and the mechanisms. Acta Ecologica Sinica (生态学报), 23,972-978. (in Chinese with English abstract) |
[9] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Dong YS (董云社), Wang ZP (王智平), Xiong XG (熊小刚), Yan ZD (阎志丹) (2004). Acclimatization of soil respiration to warming. Acta Ecologica Sinica (生态学报), 24,2649-2655. (in Chinese with English abstract) |
[10] | Cotrufo MF, Gomssen A (1997). Elevated CO 2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytologist, 37,421-431. |
[11] |
Dai A, Meehl GA, Washington WM, Wigley TML, Arblaster JM (2001a). Ensemble simulation of twenty-first century climate changes: business-as-usual versus CO 2 stabilization. Bulletin of the American Meteorological Society, 82,2377-2388.
DOI URL |
[12] |
Dai A, Wigley TML, Boville BA, Kiehl JT, Buja LE (2001b). Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. Journal of Climate, 14,485-519.
DOI URL |
[13] |
Houghton RA (2001). Counting terrestrial sources and sinks of carbon. Climatic Change, 48,525-534.
DOI URL |
[14] | Houghton JT, Jenkins GJ, Ephraums JJ (1990). Climate Change: The IPCC Scientific Assessments. Cambridge University Press, Cambridge,New York,USA. |
[15] |
Hulme M, Osborn TJ, Johns TC (1998). Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophysical Research Letters, 25,3379-3382.
DOI URL |
[16] |
Inclan R, Dela Torre D, Benito M, Rubio A (2007). Soil CO 2 efflux in a mixed pine-oak forest in Valsain (central Spain). The Scientific World Journal, 7,166-174.
DOI URL PMID |
[17] | Intergovernmental Panel on Climate Change IPCC (2001). Land Use, Land-Use Change and Forestry. Cambridge University Press, Cambridge, USA, 1-51. |
[18] |
Janssens IA, Crookshanks M, Taylor G, Ceulemans R (1998). Elevated atmospheric CO 2 increases fine root production, respiration, rhizosphere respiration and CO2 efflux in Scots pine seedlings. Global Change Biology, 4,871-878.
DOI URL |
[19] |
John L, Billings SA, Ziegler S, Gaindh D, Ryalss R, Finzi AC, Jackson R (2008). Soil carbon sequestration in a pine forest after 9 years of atmospheric CO 2 enrichment. Global Change Biology, 14,2910-2922.
DOI URL |
[20] |
Jones PD, Hulme M (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International Journal of Climatology, 16,361-377.
DOI URL |
[21] | King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004). A multiyear synthesis of soil respiration responses to elevated atmospheric CO 2 from four forest FACE experiments. Global Change Biology, 10,1027-1042. |
[22] | Kucera CL, Kirkham DR (1997). Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52,315-323. |
[23] | Li YN (李玉宁), Wang GY (王关玉), Li W (李伟) (2002). Soil respiration and carbon cycle. Earth Science Frontiers(地学前缘), 9,351-357. (in Chinese with English abstract) |
[24] | Lin GH, Marino CV, Wei YD, Adams J, Tubiello F, Berry JA (1998). An experimental and modeling study of response to ecosystems carbon exchanges to increasing CO 2 concentrations using a tropical ram forest mesocosm. Australian Journal of Plant Physiology, 25,547-556. |
[25] |
Liu JX, Zhang DQ, Zhou GY, Benjamin FV, Deng Q, Wang CL (2008). CO 2 enrichment increases cation and anion loss in leaching water of model forest ecosystems in southern China. Biogeosciences, 5,1783-1795.
DOI URL |
[26] | MacCracken M, Cubasch U, Gates WL, Harvey LD, Hunt B, Katz R, Lorenz E, Manabe S, McAvaney B, McFarlane N, Meehl G, Meleshko V, Robock A, Stenchikov G, Stouffer R, Wang WC, Washington W, Watts R, Zebiak S (1991). A critical appraisal of model simulations. In: Schlesinger ME ed. Greenhouse-Gas-Induced Climate Change: a Critical Appraisal of Simulations and Observations, Developments in Atmospheric Science 19. Elsevier, Amsterdam, 583-591. |
[27] | Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: ecosystem consequences in tropical ecosystems. Biogeochemistry, 46,67-83. |
[28] | Mielnick PC, Dugas WA (2000). Soil CO 2 efflux in a tallgrass prairie. Soil Biology & Biochemistry, 32,221-228. |
[29] | Mo JM, Zhang W, Zhu WX, Fang YT, Li DJ, Zhao P (2007). Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China. Plant and Soil, 296,125-135. |
[30] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14,403-412. |
[31] | Nitschelm J, Lüscher A, Hartwig U, Kessel C (1997). Using stable isotopes to determine soil carbon input differences under ambient and elevated atmosphere CO 2 conditions. Global Change Biology, 3,411-416. |
[32] | Oberbauer SF, Oechel WC, Riechers GH (1986). Soil respiration of Alaskan tundra at elevated atmospheric carbon dioxide concentrations. Plant and Soil, 96,145-148. |
[33] | O’Neil EG (1994). Response of soil biota to elevated atmospheric carbon dioxide. Plant and Soil, 165,55-65. |
[34] | Peng SL (彭少麟), Li YL (李跃林), Ren H (任海), Zhao P (赵平) (2003). Progress in research on soil respiration under the global change. Advances in Earth Sciences(地球科学进展), 17,705-713. (in Chinese with English abstract) |
[35] | Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS (1995). Atmospheric CO 2, soil nitrogen and turnover of fine roots. New Phytologist, 129,579-585. |
[36] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux on soil respiration and its relationship to vegetation and climate. Tellus, 44,81-89. |
[37] | Ren R (任仁), Mi FJ (米丰杰), Bai NB (白乃彬) (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University (北京工业大学学报), 26,90-95. (in Chinese with English abstract) |
[38] | Rogers HH, Runion GB, Krupa SV (1994). Plant response to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution, 83,155-189. |
[39] | Salamanca EF, Kaneko N, Katagifi S (2003). Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Applied Soil Ecology, 3,271-281. |
[40] | Schlesinger WH (1990). Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348,232-234. |
[41] | Schlesinger WH (1995). An overview of the C cycle. In: Lal R, Levine LE, Kimble JM, Stewart BA eds. Soils and Global Change. CRC Press, Boca Raton, FL, USA, 9-26. |
[42] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48,7-20.
DOI URL |
[43] | Sini MN, Jouko S, Seppo K (2004). Soil CO 2 efflux in a boreal pine forest under atmospheric CO 2 enrichment and air warming. Global Change Biology, 10,1363-1376. |
[44] | Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006). Soil atmospheric exchange of CO 2, CH 4 and N 2O in three subtropical forest ecosystems in Southern China. Global Change Biology, 12,546-560. |
[45] | van Ginkel JH, Gorissen A (1998). In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Science Society of America Journal, 62,951-958. |
[46] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7,737-750. |
[47] | Vose JM, Elliott KJ, Johnson DW, Tingey DT, Johnson MG (1997). Soil respiration response to three years of elevated CO 2 and N fertilization in ponderosa pine ( Pinus ponderosa Doug. ex Laws). Plant and Soil, 190,19-28. |
[48] | Zak DR, Pregitzer KS, King JS, Holmes WE (2000). Elevated atmospheric CO 2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 147,201-222. |
[49] | Zhang DQ, Sun XM, Zhou GY, Yan JH, Wang YS, Liu SZ, Zhou CY, Liu JX, Tang XL, Li J, Zhang QM (2006). Seasonal dynamics of soil CO 2 effluxes with responses to environmental factors in lower subtropical forest of China. Science in China Series D, 49 (Suppl. II),139-149. |
[50] | Zhao YT (赵玉涛), Han SJ (韩士杰), Li XF (李雪峰), Hu YL (胡艳玲) (2009). Effect of simulated nitrogen deposition on soil microbial biomass. Journal of Northeast Forestry University(东北林业大学学报), 37,49-51. (in Chinese with English abstract) |
[51] | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. AMBIO-A Journal of the Human Environment, 31,79-87. |
[52] | Zhou YM (周玉梅), Han SJ (韩士杰), Xin LH (辛丽花) (2006). Soil respiration of Pinus koraiensis and P. svlvestriformis trees growing at elevated CO 2 concentration. Chinese Journal of Applied Ecology(应用生态学报), 17,1757-1760. |
[53] | Zhou YM (周玉梅), Han SJ (韩士杰), Zheng JQ (郑俊强), Xin LH (辛丽花), Zhang HS (张海森) (2007). Effects of elevated CO 2 concentrations on soil microbial respiration and root/rhizosphere respiration in forest soils. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31,386-393. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[9] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[12] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[13] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[14] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[15] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19