植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 71-80.DOI: 10.3773/j.issn.1005-264x.2009.01.008
收稿日期:
2008-06-10
接受日期:
2008-07-10
出版日期:
2009-06-10
发布日期:
2009-01-30
通讯作者:
杨晓晖
作者简介:
*E-mail: yangxh@forestry.ac.cn基金资助:
YU Hong, YANG Xiao-Hui*(), CI Long-Jun
Received:
2008-06-10
Accepted:
2008-07-10
Online:
2009-06-10
Published:
2009-01-30
Contact:
YANG Xiao-Hui
摘要:
利用全林木定位的方法, 对地表火干扰1年后的樟子松(Pinus sylvestris L. var. mongolica Litv.)林进行调查, 并通过假设检验和成对相关函数对其林火及林分结构特征和空间格局进行分析。结果表明, 林火强度相似的同一场地表火干扰下, 不同林分的密度均大大降低, 胸高断面积仅略有下降, 林分结构特征则有趋同的态势。不同林分的空间格局也有相似的变化趋势, 烧死木均表现为显著的双尺度聚集分布及显著的正相关, 活立木也表现出显著的正相关; 地表火干扰前后, 樟子松林的空间格局均为显著的聚集分布, 但地表火干扰后其聚集分布的尺度范围变小; 存活林木中, 大树和幼树则呈现出相互独立或略微排斥的关系。显然, 地表火驱动下, 不同樟子松林的空间格局呈现出相似的变化趋势, 并推动其向着成熟林方向演替, 这对天然樟子松林的资源保护和经营管理有着重要意义。
喻泓, 杨晓晖, 慈龙骏. 地表火对红花尔基沙地樟子松种群空间分布格局的影响. 植物生态学报, 2009, 33(1): 71-80. DOI: 10.3773/j.issn.1005-264x.2009.01.008
YU Hong, YANG Xiao-Hui, CI Long-Jun. VARIATIONS OF SPATIAL PATTERN IN FIRE-MEDIATED MONGOLIAN PINE FOREST, HULUN BUIR SAND REGION, INNER MONGOLIA, CHINA. Chinese Journal of Plant Ecology, 2009, 33(1): 71-80. DOI: 10.3773/j.issn.1005-264x.2009.01.008
图1 调查样地的立木点图 (a) B06-1和(b) B06-2为2006年地表火干扰的樟子松林样地。黑色(●)为高度大于1.3 m的烧死木、灰色(●)为高度小于1.3 m的烧死木、黑色(○)为树高大于1.3 m的活立木、灰色(○)为树高小于1.3 m的存活幼树。胸径大于10 cm立木的符号与其胸径大小成比例, 最小的符号为胸径小于或等于10 cm及高度小于1.3 m的立木 Symbols are fire-enhanced dead trees with heights not less than 1.3 m (●), fire-enhanced dead trees with heights less than 1.3 m (●), living trees with heights not less than 1.3 m (○), and living trees with heights less than 1.3 m (○). Symbol sizes are proportional to the DBH not less than 10 cm. The smallest symbols are agents with DBH not more than 10 cm or not more than 1.3 m in height
Fig. 1 Maps of (a) B06-1 (plot 1 burned in 2006) and (b) B06-2 (plot 2 burned in 2006)
假设 Hypothesis | 零模型 Null model | 代码 Code | 点格局分析 Point pattern analysis |
---|---|---|---|
双变量的两个格局先后顺序出现, 格局1独立于格局2, 但是后者受前者的影响 The two types of points were not created at the same time, but in sequence, pattern 2 did not influence the development of pattern 1, but pattern 1 may influence the development of pattern 2 | 先决条件假设 Antecedent condition | AC | 火后存活大树(格局1) 和幼树(格局2) Survival trees (pattern 1) and survival saplings (pattern 2) |
格局的点间没有相互作用且是相互独立的, 其密度在研究区内也是相对均一的 There were no interactions between the points of the patterns and they were independent each other, the first-order intensity of the pattern is constant over the study region | 完全空间随机假设 Complete spatial randomness | CSR | 火后存活立木(点的 密度是相对均一的) Survivals (the first-order intensity of the pattern is relative constant over the region) |
在两个大、小不同的尺度上表现为Neyman-Scott过程 The pattern shows Neyman-Scott process at the small and large scales | 双尺度集聚过程 Double-cluster process | DC | 烧死木(空间点形成明显 的大小不同的聚块体) Fire-enhanced dead trees (the points of the pattern follows a double-clustered structure at the small and large scales) |
点的密度在不同区域上存在差异(在本研究中, 探测空间异质性的滑动窗口的半径为30 m) The first-order intensity of the pattern is not constant over the study region (the radius of the moving window to explore the heterogeneous pattern is 30 m in the study) | 空间异质性 泊松过程 Heterogeneous Poisson process | HP | 林火干扰前林木、火后存活的 幼树(点的密度不是相对均一的) Trees in prefire stand, survival saplings (the intensity of points is not constant over the region) |
研究对象和对照产生于同一随机过程, 分别是其共同分布格局的一个随机子样本 The pattern of controls and targets (“case”) are created by the same stochastic process, and each of them represents a random sub-sample of the joined pattern of the control and the case points | 随机标识假设 Random labeling | RL | 火后存活立木(格局1)和烧死木(格局2)(二者同时受林火的影响) Survivals (pattern 1) and fire-enhanced dead trees (pattern 2) (the two patterns were simultaneously attacked by fire) |
表1 空间点格局分析的零假设模型及其代码
Table 1 Null models and its codes in spatial point pattern analysis
假设 Hypothesis | 零模型 Null model | 代码 Code | 点格局分析 Point pattern analysis |
---|---|---|---|
双变量的两个格局先后顺序出现, 格局1独立于格局2, 但是后者受前者的影响 The two types of points were not created at the same time, but in sequence, pattern 2 did not influence the development of pattern 1, but pattern 1 may influence the development of pattern 2 | 先决条件假设 Antecedent condition | AC | 火后存活大树(格局1) 和幼树(格局2) Survival trees (pattern 1) and survival saplings (pattern 2) |
格局的点间没有相互作用且是相互独立的, 其密度在研究区内也是相对均一的 There were no interactions between the points of the patterns and they were independent each other, the first-order intensity of the pattern is constant over the study region | 完全空间随机假设 Complete spatial randomness | CSR | 火后存活立木(点的 密度是相对均一的) Survivals (the first-order intensity of the pattern is relative constant over the region) |
在两个大、小不同的尺度上表现为Neyman-Scott过程 The pattern shows Neyman-Scott process at the small and large scales | 双尺度集聚过程 Double-cluster process | DC | 烧死木(空间点形成明显 的大小不同的聚块体) Fire-enhanced dead trees (the points of the pattern follows a double-clustered structure at the small and large scales) |
点的密度在不同区域上存在差异(在本研究中, 探测空间异质性的滑动窗口的半径为30 m) The first-order intensity of the pattern is not constant over the study region (the radius of the moving window to explore the heterogeneous pattern is 30 m in the study) | 空间异质性 泊松过程 Heterogeneous Poisson process | HP | 林火干扰前林木、火后存活的 幼树(点的密度不是相对均一的) Trees in prefire stand, survival saplings (the intensity of points is not constant over the region) |
研究对象和对照产生于同一随机过程, 分别是其共同分布格局的一个随机子样本 The pattern of controls and targets (“case”) are created by the same stochastic process, and each of them represents a random sub-sample of the joined pattern of the control and the case points | 随机标识假设 Random labeling | RL | 火后存活立木(格局1)和烧死木(格局2)(二者同时受林火的影响) Survivals (pattern 1) and fire-enhanced dead trees (pattern 2) (the two patterns were simultaneously attacked by fire) |
样地 Plot | 样本量 Samples | 平均值 (标准误差) Mean (standard error) | 中位数 Median | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 正态性检验 Tests for normality |
---|---|---|---|---|---|---|---|
B06-1 | 2 256 | 1.501 6 (0.026 8)a | 1.07 | 1.273 4 | 0 | 8.80 | 0.150 2 (<0.010 0) |
B06-2 | 929 | 1.397 5 (0.046 5)a | 0.77 | 1.417 8 | 0 | 7.88 | 0.791 8 (<0.000 1) |
表2 调查样地树皮熏黑高的统计特征
Table 2 Statistics of bark char heights in two surface fire-mediated plots
样地 Plot | 样本量 Samples | 平均值 (标准误差) Mean (standard error) | 中位数 Median | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 正态性检验 Tests for normality |
---|---|---|---|---|---|---|---|
B06-1 | 2 256 | 1.501 6 (0.026 8)a | 1.07 | 1.273 4 | 0 | 8.80 | 0.150 2 (<0.010 0) |
B06-2 | 929 | 1.397 5 (0.046 5)a | 0.77 | 1.417 8 | 0 | 7.88 | 0.791 8 (<0.000 1) |
内容 Attribute | B06-1 | B06-2 | ||
---|---|---|---|---|
林火前 Prefire | 林火后 Postfire | 林火前 Prefire | 林火后 Postfire | |
密度 Density (No.·hm-2) | ||||
PiMo | 2 870 (78.26) | 428 (74.05) | 3 144 (78.99) | 343 (84.07) |
BePl | 761 (20.75) | 142 (24.57) | 2 (0.05) | 0 (0) |
CrDa | 1 (0.03) | 1 (0.17) | 1 (0.03) | 0 (0) |
MaBa | 34 (0.93) | 7 (1.21) | 821 (20.63) | 65 (15.93) |
PaAv | 1 (0.03) | 0 (0) | 12 (0.30) | 0 (0) |
合计 Total | 3667 | 578 | 3 980 | 408 |
平均胸径 Mean DBH (cm) | ||||
PiMo | 8.4 (0.32) | 26.7 (0.64) | 14.7 (0.65) | 23.4 (0.80) |
BePl | 3.5 (0.09) | 5.8 (0.23) | 1.1 (0) | 0 (0) |
CrDa | 1.5 (0) | 1.5 (0) | 129 (0) | 0 (0) |
MaBa | 1.1 (0.11) | 36.3 (3.62) | 3.1 (0.10) | 5.20 (0.22) |
PaAv | 57 | 0 (0) | 2.1 (1.40) | 0 (0) |
合计 Total | 7.1 (0.24) | 21.5 (0.62) | 10.1 (0.43) | 20.4 (0.75) |
胸高断面积 Area at breast height (m2) | ||||
PiMo | 30.465 3 (97.297 4) | 29.943 6 (98.546 6) | 19.800 8 (93.648 7) | 19.667 8 (99.22) |
BePl | 0.845 6 (2.7) | 0.441 4 (1.452 7) | 0.950 3 (4.494 5) | 0 (0) |
CrDa | 0.000 2 (0.000 6) | 0.000 2 (0.000 7) | 0 (0) | 0 (0) |
MaBa | 0.000 6 (0.002) | 0 (0) | 0.391 6 (1.852 1) | 0.153 9 (0.78) |
PaAv | 0 (0) | 0 (0) | 0.001 (0.004 7) | 0 (0) |
合计 Total | 31.311 7 | 30.385 2 | 21.143 7 | 19.821 7 |
表3 调查样地的树种组成及其结构特征
Table 3 Tree species and its composition in two plots surveyed
内容 Attribute | B06-1 | B06-2 | ||
---|---|---|---|---|
林火前 Prefire | 林火后 Postfire | 林火前 Prefire | 林火后 Postfire | |
密度 Density (No.·hm-2) | ||||
PiMo | 2 870 (78.26) | 428 (74.05) | 3 144 (78.99) | 343 (84.07) |
BePl | 761 (20.75) | 142 (24.57) | 2 (0.05) | 0 (0) |
CrDa | 1 (0.03) | 1 (0.17) | 1 (0.03) | 0 (0) |
MaBa | 34 (0.93) | 7 (1.21) | 821 (20.63) | 65 (15.93) |
PaAv | 1 (0.03) | 0 (0) | 12 (0.30) | 0 (0) |
合计 Total | 3667 | 578 | 3 980 | 408 |
平均胸径 Mean DBH (cm) | ||||
PiMo | 8.4 (0.32) | 26.7 (0.64) | 14.7 (0.65) | 23.4 (0.80) |
BePl | 3.5 (0.09) | 5.8 (0.23) | 1.1 (0) | 0 (0) |
CrDa | 1.5 (0) | 1.5 (0) | 129 (0) | 0 (0) |
MaBa | 1.1 (0.11) | 36.3 (3.62) | 3.1 (0.10) | 5.20 (0.22) |
PaAv | 57 | 0 (0) | 2.1 (1.40) | 0 (0) |
合计 Total | 7.1 (0.24) | 21.5 (0.62) | 10.1 (0.43) | 20.4 (0.75) |
胸高断面积 Area at breast height (m2) | ||||
PiMo | 30.465 3 (97.297 4) | 29.943 6 (98.546 6) | 19.800 8 (93.648 7) | 19.667 8 (99.22) |
BePl | 0.845 6 (2.7) | 0.441 4 (1.452 7) | 0.950 3 (4.494 5) | 0 (0) |
CrDa | 0.000 2 (0.000 6) | 0.000 2 (0.000 7) | 0 (0) | 0 (0) |
MaBa | 0.000 6 (0.002) | 0 (0) | 0.391 6 (1.852 1) | 0.153 9 (0.78) |
PaAv | 0 (0) | 0 (0) | 0.001 (0.004 7) | 0 (0) |
合计 Total | 31.311 7 | 30.385 2 | 21.143 7 | 19.821 7 |
图2 地表火干扰前(a: B06-1, b: B06-2)后(a, b的插入图)的单变量空间格局分析 地表火干扰前的林分包括了烧死木和活立木, 图中大写字母为点格局分析所采用的零假设模型的代码(表1), “+”符号及其后的数字分别表示显著性聚集分布及其相应的尺度范围; 黑色和灰色实线分别为g(r)函数值及其99次Monte Carlo检验的99%置信区间
Fig. 2 Univariate spatial pattern analysis of pre- (a, b) and post-fire (inset figures in a, b) in B06-1 and B06-2, respectively Fire-enhanced dead trees are also included in spatial pattern analysis prefire. Capital letters are the codes of null hypothesis models (Table 1). “+” and numbers followed indicate significant aggregation at the corresponding range of scales. Black and grey solid lines indicate g(r) and their corresponding lower and upper 99% confidence limits constructed by 99 Monte Carlo simulations, respectively
图3 烧死木的单变量空间格局分析 a)、b)及其插入图分别为B06-1和B06-2样地在大、小不同尺度上双尺度聚集分布的点格局分析。图中大写字母为点格局分析所采用的零假设模型的代码(表1), “+”符号及其后的数字分别表示显著性双尺度聚集分布及其聚块的半径; 黑色和灰色实线分别为g(r)函数值及其99次Monte Carlo检验的99%置信区间
Fig. 3 Univariate spatial pattern analysis of fire-enhanced dead trees in B06-1 (a), B06-2 (b), respectively a) and b) and its inset figures are double-cluster pattern analysis of fire-enhanced dead trees at smaller and larger scales, respectively. Capital letters are codes of null hypothesis models (Table 1). “+” and numbers followed stand significant aggregation and the radii of the corresponding clusters, respectively. Black and grey solid lines stand g(r) and their corresponding lower and upper 99% confidence limits constructed by 99 Monte Carlo simulations, respectively
图4 火后存活大树(格局1)与幼树(格局2)间的双变量空间格局分析 B06-1(a)和B06-2(b)的大树是指胸径大于或等于10 cm 的活立木, 幼树是指胸径小于10 cm和树高低于1.3 m的活立木。图中大写字母为点格局分析所采用的零假设模型的代码(表1), “+”和“-”符号及其后的数字分别表示显著性聚集和均匀分布及其相应的尺度范围; 黑色和灰色实线分别为g12(r)函数值和99次Monte Carlo检验的99%置信区间
Fig. 4 Bivariate spatial pattern analysis of adults (pattern 1) and saplings (pattern 2) in B06-1 (a) and B06-2 (b), respectively Adults are survivals not less than 10 cm in DBH, and saplings survivals not more than 10 cm in DBH and not more than 1.3 m in height in B06-1 and B06-2, respectively. Capital letters are the codes of null hypothesis models (Table 1). “+” and “-” and numbers followed stand significant aggregation and repulsion at the corresponding range of scales, respectively. Black and grey solid lines stand g12(r) function and their corresponding lower and upper 99% confidence limits constructed by 99 Monte Carlo simulations, respectively
图5 活立木(格局1)和烧死木(格局2)的双变量空间格局分析 a)和b)及其插入图分别为B06-1和B06-2活立木和烧死木的点格局分析。图中大写字母为点格局分析所采用的零假设模型的代码(表1), “-”符号及其后的数字分别表示显著性均匀分布及其相应的尺度范围; 黑色和灰色实线为函数值及其99次Monte Carlo检验的99%置信区间
Fig. 5 Bivariate spatial pattern analysis of survivals (pattern 1) and fire-enhanced dead trees (pattern 2) in B06-1 (a) and B06-2 (b) and its inset figures, respectively Capital letters are the codes of null hypothesis models (Table 1). “-” and numbers followed stand significant repulsion at the corresponding range of scales. Black and grey solid lines stand function values and their corresponding lower and upper 99% confidence limits constructed by 99 Monte Carlo simulations
[1] | Barnes BV, Zak DR, Denton SR, Spurr SH (1998). Forest Ecology. John Wiley & Sons Inc., New York, 279-297, 391-392, 414-428. |
[2] | Bond WJ, van Wilgen BW (1996). Fire and Plants. Chapman & Hall, London, 1-15. |
[3] |
Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
URL PMID |
[4] | Dale MRT (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge University Press, Cambridge, 211-220, 231-237. |
[5] | Dale MRT, Dixon P, Fortin M-J, Legendre P, Myers DE, Rosenberg MS (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25, 558-577. |
[6] | Diggle PJ (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, London. |
[7] | Dixon PM (2002). Ripley's K function. In: El-Shaarawi AH, Piegorsch WW eds. Encyclopedia of Environmetrics. John Wiley & Sons, Chichester, 1796-1803. |
[8] | Fulé PZ, Laughlin DC (2007). Wildland fire effects on forest structure over an altitudinal gradient, Grand Canyon National Park, USA. Journal of Applied Ecology, 44, 136-146. |
[9] | Getis A, Franklin J (1987). Second-order neighborhood analysis of mapped point patterns. Ecology, 68, 473-477. |
[10] | Getzin S, Dean C, He F, Trofymow JA, Wiegand K, Wiegand T (2006). Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 29, 671-682. |
[11] | Goldammer JG, Furyaev VV (1996). Fire in Ecosystems of Boreal Eurasia. Kluwer Academic Publishers, Dordrecht, 2. |
[12] | Gu YC (顾云春) (1985). The succession of forest communities in the forest region of the Greater Xingan Mountains. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学丛刊), 9, 64-70. (in Chinese with English abstract) |
[13] | He F, Duncan RP (2000). Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
[14] | Li XZ (李秀珍), Wang XG (王绪高), Hu YM (胡远满), Kong FH (孔繁花), Xie FJ (解伏菊) (2004). Influence of forest fire on vegetational succession in daxinganling. Journal of Fujian College of Forestry (福建林学院学报), 24, 182-187. (in Chinese with English abstract) |
[15] | Lin QZ (林其钊), Shu LF (舒立福) (2003). Forest Fire Introduction (林火概论). University of Science and Technology of China Press, Hefei, 1-8, 130-141. (in Chinese) |
[16] | Luo JC (罗菊春) (2002). Influence of forest fire disaster on forest ecosystem in Great Xing anling. Journal of Beijing Forestry University (北京林业大学学报), 24, 101-107. (in Chinese with English abstract) |
[17] | Menges ES, Deyrup MA (2001). Postfire survival in south Florida slash pine: interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles. International Journal of Wildland Fire, 10, 53-63. |
[18] | Penttinen A, Stoyan D, Henttonen HM (1992). Marked point processes in forest statistics. Forest Science, 38, 806-824. |
[19] | Perry GLW, Miller BP, Enright NJ (2006). A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecology, 187, 59-82. |
[20] | Peterson DW, Reich PB (2001). Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecological Applications, 11, 914-927. |
[21] | Regelbrugge JC, Conard SG (1993). Modeling tree mortality following wildfire in Pinus ponderosa forests in the central Sierra Nevada of California. International Journal of Wildland Fire, 3, 139-148. |
[22] | Ripley BD (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13, 255-266. |
[23] | Ripley BD (1977). Modelling spatial patterns. Journal of the Royal Statistical Society, Series B, 39, 172-212. |
[24] | Ripley BD (1981). Spatial Statistics. John Wiley & Sons, New York. |
[25] | Ryan KC (2002). Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica, 36, 13-39. |
[26] | SAS Institute (2002). SAS version 9.0. SAS Institute Inc., Cary, North Carolina, USA. |
[27] | Schurr FM, Bossdorf O, Milton SJ, Schumacher J (2004). Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecology, 173, 271-282. |
[28] | Stoyan D, Stoyan H (1994). Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics. Wiley, New York, 249. |
[29] | Sun HZ (孙洪志), Shi LY (石丽艳) (2005). Spatial distribution pattern of Scotch pine in sandy area. Journal of Northeast Forestry University (东北林业大学学报), 33, 93-94. (in Chinese with English abstract) |
[30] | Sun JP (孙静萍), Feng H (冯瀚) (1989). Influences of fire to Mongolian pine forest in sand region. Inner Mongolia Forestry Science and Technology (内蒙古林业科技), (4), 20, 21-23. (in Chinese) |
[31] | Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007). Human influence on California fire regimes. Ecological Applications, 17, 1388-1402. |
[32] | Taylor AH (2000). Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A. Journal of Biogeography, 27, 87-104. |
[33] | Waldrop TA, Brose PH (1999). A comparison of fire intensity levels for stand replacement of table mountain pine ( Pinus pungens Lamb.). Forest Ecology and Management, 113, 155-166. |
[34] | Watson DM, Roshier DA, Wiegand T (2007). Spatial ecology of a root parasite—from pattern to process. Austral Ecology, 32, 359-369. |
[35] | Watt AS (1947). Pattern and process in the plant community. The Journal of Ecology, 35, 1-22. |
[36] | Whelan RJ (1995). The Ecology of Fire. Cambridge University Press, Cambridge, UK, 8-56. |
[37] | Wiegand T, Moloney KA (2004). Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 104, 209-229. |
[38] | Yang XH (杨晓晖), Yu H (喻泓), Yu CT (于春堂), Ci LJ (慈龙骏) (2008). Spatial pattern of post-fire regeneration of Pinus sylvestris var. mongolica forest in Hulun Buir Sandland, northeastern China. Journal of Beijing Forestry University (北京林业大学学报), 30, 47-52. (in Chinese with English abstract) |
[39] | Zhao HY (赵慧颖), Meng J (孟军), Song WS (宋卫士), Wang YP (王彦平) (2006). Study on the weather condition of“5·16”disastrous event of forest fire in Mongolian pine forest, Honghuaerji, Inner Mongolia. Forest Fire Prevention (森林防火), (4), 13-15. (in Chinese) |
[40] | Zhao XL (赵兴梁) (1958). A preliminary survey on Mongolian pine in Hulun Buir sand region, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学资料丛刊), 1, 90-180. (in Chinese) |
[41] | Zhao XL (赵兴梁), Li WY (李文英) (1963). Mongolian Pine (樟子松). China Agriculture Publishing House, Beijing, 24-26, 64-65, 82-85. (in Chinese) |
[42] | Zhu JJ, Kang HZ, Tan H, Xu ML, Wang J (2005). Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji, China. Journal of Forestry Research, 16, 253-259. |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 王丽萍, 乌俊杰, 柴勇, 李家华, 杨昌级, 赵士杰. 高黎贡山中山湿性常绿阔叶林优势种空间分布格局及其关联性[J]. 植物生态学报, 2024, 48(2): 180-191. |
[3] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[4] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[5] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[6] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[7] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[8] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[9] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[10] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[11] | 韦博良, 袁志良, 牛帅, 刘霞, 贾宏汝, 叶永忠. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响[J]. 植物生态学报, 2017, 41(4): 430-438. |
[12] | 葛结林, 熊高明, 李家湘, 徐文婷, 赵常明, 卢志军, 李跃林, 谢宗强. 中国南方灌丛凋落物现存量[J]. 植物生态学报, 2017, 41(1): 5-13. |
[13] | 李宝, 程雪寒, 吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报, 2016, 40(5): 436-446. |
[14] | 张炜平,潘莎,贾昕,储诚进,肖洒,林玥,白燕远,王根轩. 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展[J]. 植物生态学报, 2013, 37(6): 571-582. |
[15] | 徐丽,于书霞,何念鹏,温学发,石培礼,张扬建,代景忠,王若梦. 青藏高原高寒草地土壤碳矿化及其温度敏感性[J]. 植物生态学报, 2013, 37(11): 988-997. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19