植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 571-582.DOI: 10.3724/SP.J.1258.2013.00059
张炜平1,潘莎1,贾昕2,储诚进3,肖洒3,林玥4,5,6,白燕远7,王根轩1,*()
收稿日期:
2012-12-19
接受日期:
2013-04-17
出版日期:
2013-12-19
发布日期:
2013-06-05
通讯作者:
王根轩
基金资助:
ZHANG Wei-Ping1,PAN Sha1,JIA Xin2,CHU Cheng-Jin3,XIAO Sa3,LIN Yue4,5,6,BAI Yan-Yuan7,WANG Gen-Xuan1,*()
Received:
2012-12-19
Accepted:
2013-04-17
Online:
2013-12-19
Published:
2013-06-05
Contact:
WANG Gen-Xuan
摘要:
植物间的相互作用对种群动态和群落结构有着重要的影响。大量的野外实验已经揭示了正相互作用(互利)在群落中的普遍存在及其重要性。为了弥补野外实验方法的不足, 模型方法被越来越多地应用于正相互作用及其生态学效应的研究中。该文基于个体模型研究, 探讨了植物间正相互作用对种群动态和群落结构的影响。介绍了植物间正相互作用的定义和发生机制、植物间相互作用与环境梯度的关系。正相互作用是指发生在相邻的植物个体之间, 至少对其中一个个体有益的相互作用。植物通过直接(生境改善或资源富集)或间接(协同防御等)作用使局部环境有利于邻体而发生正相互作用。胁迫梯度假说认为互利的强度或重要性随着环境胁迫度的增加而增加, 但是越来越多的经验研究认为胁迫梯度假说需要改进。以网格模型和影响域模型为例, 介绍了基于个体的植物间相互作用模型方法。基于个体模型, 对近年来国内外正相互作用对种群时间动态(如生物量-密度关系)、空间分布格局和群落结构(如群落生物量-物种丰富度关系)影响的研究进行了总结。指出未来的研究应集中在对正相互作用概念和机制的理解, 新的模型, 新的种群、群落, 甚至生态系统问题, 以及在全球变化背景下进行相关的研究。
张炜平,潘莎,贾昕,储诚进,肖洒,林玥,白燕远,王根轩. 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展. 植物生态学报, 2013, 37(6): 571-582. DOI: 10.3724/SP.J.1258.2013.00059
ZHANG Wei-Ping,PAN Sha,JIA Xin,CHU Cheng-Jin,XIAO Sa,LIN Yue,BAI Yan-Yuan,WANG Gen-Xuan. Effects of positive plant interactions on population dynamics and community structures: a review based on individual-based simulation models. Chinese Journal of Plant Ecology, 2013, 37(6): 571-582. DOI: 10.3724/SP.J.1258.2013.00059
图1 植物间相互作用沿胁迫梯度变化(改自Maestre et al., 2009)。
Fig. 1 Variations of plant-plant interactions along the stress gradient (modified from Maestre et al., 2009).
[1] |
Bai YY, Zhang WP, Jia X, Wang N, Xu SS, Wang GX (2011). How lateral dimension of roots determines aboveground self-thinning. Ecological Complexity, 8, 310-312.
DOI URL |
[2] |
Bai YY, Zhang WP, Jia X, Wang N, Zhou L, Xu SS, Wang GX (2010). Variation in root : shoot ratios induced the diffe- rences between above- and below-ground mass- density relationships along an aridity gradient. Acta Oecologica, 36, 393-395.
DOI URL |
[3] |
Bartelink H (2000). Effects of stand composition and thinning in mixed-species forests: a modeling approach applied to Douglas-fir and beech. Tree Physiology, 20, 399-406.
URL PMID |
[4] |
Bauer S, Berger U, Hildenbrandt H, Grimm V (2002). Cyclic dynamics in simulated plant populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 2443-2450.
DOI URL PMID |
[5] | Begon M, Harper JL, Townsend CR (1996). Ecology: Indivi- duals, Populations, and Communities. Wiley-Blackwell, New York. |
[6] |
Beltrán E, Valiente-Banuet A, Verdú M (2012). Trait divergence and indirect interactions allow facilitation of congeneric species. Annals of Botany, 110, 1369-1376.
DOI URL PMID |
[7] |
Berger U, Piou C, Schiffers K, Grimm V (2008). Competition among plants: concepts, individual-based modelling approaches, and a proposal for a future research strategy. Perspectives in Plant Ecology Evolution and Systematics, 9, 121-135.
DOI URL |
[8] |
Bertness MD, Callaway R (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.
DOI URL PMID |
[9] |
Bertness MD, Leonard GH (1997). The role of positive interactions in communities: lessons from intertidal habitats. Ecology, 78, 1976-1989.
DOI URL |
[10] |
Bithell M, Macmillan W (2007). Escape from the cell: spatially explicit modelling with and without grids. Ecological Modelling, 200, 59-78.
DOI URL |
[11] |
Brooker RW (2006). Plant-plant interactions and environmental change. New Phytologist, 171, 271-284.
DOI URL PMID |
[12] | Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielborger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18-34. |
[13] |
Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007). Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology, 245, 59-65.
DOI URL PMID |
[14] |
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
DOI URL |
[15] |
Bruno JF, Stachowicz JJ, Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119-125.
DOI URL |
[16] |
Cahill JF (1999). Fertilization effects on interactions between above- and belowground competition in an old field. Ecology, 80, 466-480.
DOI URL |
[17] |
Callaway RM (1995). Positive interactions among plants. The Botanical Review, 61, 306-349.
DOI URL |
[18] | Callaway RM (2007). Positive Interactions and Interdepen- dence in Plant Communities. Springer-Verlag, Dordr- echt, The Netherlands. |
[19] |
Callaway RM, Brooker R, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844-848.
DOI URL PMID |
[20] |
Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78, 1958-1965.
DOI URL |
[21] |
Cavieres LA, Badano EI (2009). Do facilitative interactions increase species richness at the entire community level? Journal of Ecology, 97, 1181-1191.
DOI URL |
[22] |
Chaneton EJ, Noemi Mazía C, Kitzberger T (2010). Facilitation vs. apparent competition: insect herbivory alters tree seedling recruitment under nurse shrubs in a steppe- woodland ecotone. Journal of Ecology, 98, 488-497.
DOI URL |
[23] |
Chen SY, Xu J, Maestre FT, Chu CJ, Wang G, Xiao S (2009). Beyond dual-lattice models: incorporating plant strategies when modeling the interplay between facilitation and competition along environmental severity gradients. Journal of Theoretical Biology, 258, 266-273.
DOI URL PMID |
[24] |
Cheng DL, Wang GX, Chen BM, Wei XP (2006). Positive interactions: crucial organizers in a plant community. Journal of Integrative Plant Biology, 48, 128-136.
DOI URL |
[25] |
Choler P, Michalet R, Callaway RM (2001). Facilitation and competition on gradients in alpine plant communities. Ecology, 82, 3295-3308.
DOI URL |
[26] | Chu CJ (2010). Effects of Positive Interactions Among Plants on Population Dynamics and Community Structures. PhD dissertation. Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[ 储诚进 (2010). 植物间正相互作用对种群动态与群落结构的影响研究. 博士学位论文, 兰州大学, 兰州.] | |
[27] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL PMID |
[28] |
Chu CJ, Weiner J, Maestre FT, Wang YS, Morris EC, Xiao S, Yuan JL, Du GZ, Wang G (2010). Effects of positive interactions, size symmetry of competition and abiotic stress on self-thinning in simulated plant populations. Annals of Botany, 106, 647-652.
DOI URL PMID |
[29] |
Chu CJ, Weiner J, Maestre FT, Xiao S, Wang YS, Li Q, Yuan JL, Zhao LQ, Ren ZW, Wang G (2009). Positive interactions can increase size inequality in plant populations. Journal of Ecology, 97, 1401-1407.
DOI URL |
[30] | Czárán T (1998). Spatiotemporal Models of Population and Community Dynamics. Chapman and Hall, London. |
[31] |
Dai XF, Jia X, Zhang WP, Bai YY, Zhang JY, Wang Y, Wang GX (2009). Plant height-crown radius and canopy coverage-density relationships determine above-ground biomass-density relationship in stressful environments. Biology Letters, 5, 571-573.
URL PMID |
[32] |
Deng JM, Ran JZ, Wang ZQ, Fan ZX, Wang GX, Ji MF, Liu JQ, Wang Y, Brown JH (2012a). Models and tests of optimal density and maximal yield for crop plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 15823-15828.
DOI URL |
[33] |
Deng JM, Wang GX, Morris EC, Wei XP, Li DX, Chen BM, Zhao CM, Liu J, Wang Y (2006). Plant mass-density relationship along a moisture gradient in North-West China. Journal of Ecology, 94, 953-958.
DOI URL |
[34] |
Deng JM, Zuo W, Wang Z, Fan Z, Ji M, Wang G, Ran J, Zhao C, Liu J, Niklas KJ, Hammond ST, Brown JH (2012b). Insights into plant size-density relationships from models and agricultural crops. Proceedings of the National Academy of Sciences of the United States of America, 109, 8600-8605.
DOI URL |
[35] |
Forrester DI, Vanclay JK, Forrester RI (2011). The balance between facilitation and competition in mixtures of Eucalyptus and Acacia changes as stands develop. Oecologia, 166, 265-272.
DOI URL PMID |
[36] |
Getzin S, Wiegand T, Wiegand K, He FL (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96, 807-820.
DOI URL |
[37] |
Gómez-Aparicio L (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. Journal of Ecology, 97, 1202-1214.
DOI URL |
[38] |
Graff P, Aguiar MR (2011). Testing the role of biotic stress in the stress gradient hypothesis. Processes and patterns in arid rangelands. Oikos, 120, 1023-1030.
DOI URL |
[39] | Grime JP (1979). Plant Strategies and Vegetation Processes. Wiley, Chichester, UK. |
[40] | Grimm V, Railsback SF (2005). Individual-Based Modeling and Ecology. Princeton University Press, Princeton. |
[41] |
Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310, 987-991.
DOI URL PMID |
[42] |
Gross K (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11, 929-936.
URL PMID |
[43] |
He Q, Cui BS, Bertness MD, An Y (2012). Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology, 93, 2023-2029.
URL PMID |
[44] | Hubbell SP (2008). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[45] | Jia X (2011). Plant Competition and Facilitation and Their Role in Driving Population Dynamics Across Environ- mental Gradients: A Study Based on Zone-of-Influence (ZOI) Models. PhD dissertation. Zhejiang University, Hangzhou. (in Chinese with English abstract) |
[ 贾昕 (2011). 基于影响域模型的植物间相互作用沿环境梯度的变化规律及其对种群动态调控的研究. 博士学位论文, 浙江大学, 杭州.] | |
[46] |
Jia X, Dai XF, Shen ZX, Zhang JY, Wang GX (2011). Facilitation can maintain clustered spatial pattern of plant populations during density-dependent mortality: insights from a zone-of-influence model. Oikos, 120, 472-480.
DOI URL |
[47] |
Kleinn C, Vilčko F (2006). A new empirical approach for estimation in k-tree sampling. Forest Ecology and Management, 237, 522-533.
DOI URL |
[48] |
Lamb EG, Kembel SW, Cahill Jr JF (2009). Shoot, but not root, competition reduces community diversity in experimental mesocosms. The Journal of Ecology, 97, 155-163.
DOI URL |
[49] | Li B, Yang C, Lin P (2000). Ecology. Higher Education Press, Beijing. (in Chinese) |
[ 李博, 杨持, 林鹏 (2000). 生态学. 高等教育出版社, 北京.] | |
[50] |
Lin Y, Berger U, Grimm V, Ji QR (2012). Differences between symmetric and asymmetric facilitation matter: exploring the interplay between modes of positive and negative plant interactions. Journal of Ecology, 100, 1482-1491.
DOI URL |
[51] |
Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004). Rethinking plant community theory. Oikos, 107, 433-438.
DOI URL |
[52] |
Loydi A, Eckstein RL, Otte A, Donath TW (2012). Effects of litter on seedling establishment in natural and semi-natural grasslands: a meta-analysis. Journal of Ecology, 101, 454-464.
DOI URL |
[53] |
Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010). Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2057-2070.
DOI URL |
[54] |
Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199-205.
DOI URL |
[55] |
Maestre FT, Valladares F, Reynolds JF (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748-757.
DOI URL |
[56] |
May F, Grimm V, Jeltsch F (2009). Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry. Oikos, 118, 1830-1843.
DOI URL |
[57] |
McInnis LM, Oswald BP, Williams HM, Farrish KW, Unger DR (2004). Growth response of Pinus taeda L. to herbicide, prescribed fire, and fertilizer. Forest Ecology and Management, 199, 231-242.
DOI URL |
[58] |
Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, Valiente-Banuet A, Callaway RM (2006). Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecology Letters, 9, 767-773.
URL PMID |
[59] |
Michalet R, Xiao S, Touzard B, Smith DS, Cavieres LA, Callaway RM, Whitham TG (2011). Phenotypic variation in nurse traits and community feedbacks define an alpine community. Ecology Letters, 14, 433-443.
DOI URL PMID |
[60] |
Montesinos-Navarro A, Segarra-Moragues JG, Valiente- Banuet A, Verdú M (2012). The network structure of plant-arbuscular mycorrhizal fungi. New Phytologist, 194, 536-547.
DOI URL PMID |
[61] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009). Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI URL |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI URL |
|
[62] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611.
DOI URL |
[63] |
Stoll P, Bergius E (2005). Pattern and process: competition causes regular spacing of individuals within plant populations. Journal of Ecology, 93, 395-403.
DOI URL |
[64] | Sun RY (2001). Principles of Animal Ecology. Beijing Normal University Press, Beijing. (in Chinese) |
[ 孙儒泳 (2001). 动物生态学原理. 北京师范大学出版社, 北京] | |
[65] | Tilman D (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
[66] |
Travis JMJ, Brooker RW, Clark EJ, Dytham C (2006). The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology, 241, 896-902.
DOI URL PMID |
[67] |
Travis JMJ, Brooker RW, Dytham C (2005). The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model. Biology Letters, 1, 5-8.
DOI URL PMID |
[68] |
Valiente-Banuet A, Verdu M (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 10, 1029-1036.
URL PMID |
[69] | Wang GX (1993). On Ecological Field. He’nan Science and Technology Press, Zhengzhou. (in Chinese) |
[ 王根轩 (1993). 生态场论. 河南科学技术出版社, 郑州.] | |
[70] | Wang GX, Zhao SL (1993). The spatial distribution of the synthetical ecological effect of plant individuals under semi-arid ecological conditions. Acta Ecologica Sinica, 13, 58-66. (in Chinese with English abstract) |
[ 王根轩, 赵松岭 (1993). 半干旱生态条件下植物个体的综合生态效应的空间距离分布规律. 生态学报, 13, 58-66.] | |
[71] | Wang GX, Zhao SL (1995). The spatial distribution of the ecological field in spring wheat colony under semi-arid ecological conditions. Acta Ecologica Sinica, 15, 121-127. (in Chinese with English abstract) |
[ 王根轩, 赵松岭 (1995). 半干旱生态条件下春小麦群体生态场的空间分布. 生态学报, 15, 121-127.] | |
[72] |
Wang Y, Ellwood MDF, Maestre FT, Yang Z, Wang G, Chu C (2012). Positive interactions can produce species-rich communities and increase species turnover through time. Journal of Plant Ecology, 5, 417-421.
DOI URL |
[73] |
Weiner J, Conte PT (1981). Dispersal and neighborhood effects in an annual plant competition model. Ecological Modelling, 13, 131-147.
DOI URL |
[74] |
Weiner J, Freckleton RP (2010). Constant final yield. Annual Review of Ecology, Evolution, and Systematics, 41, 173-192.
DOI URL |
[75] |
Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001). The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. The American Naturalist, 158, 438-450.
DOI URL PMID |
[76] |
Weiner J, Xiao S (2012). Variation in the degree of specialization can maintain local diversity in model communities. Theoretical Ecology, 5, 161-166.
DOI URL |
[77] | Wilensky U (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, School of Education & Social Policy, Northwestern University, Evanston, USA. http://ccl.northwestern.edu/netlogo. Cited 4 May 2013. |
[78] |
Xiao S, Michalet R, Wang G, Chen SY (2009). The interplay between species’ positive and negative interactions shapes the community biomass-species richness relationship. Oikos, 118, 1343-1348.
DOI URL |
[79] | Xu J (2009). The Simulation and Experiment Study of Facilitation Mechanism and Its Response to the Discrepancies of Species Traits. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[ 徐瑾 (2009). 种间正相互作用机理及其对物种特性差异响应的模拟与实验研究. 硕士学位论文, 兰州大学, 兰州.] | |
[80] |
Yamamura N, Higashi M, Behera N, Yuichiro Wakano J (2004). Evolution of mutualism through spatial effects. Journal of Theoretical Biology, 226, 421-428.
DOI URL PMID |
[81] |
Zhang H, Wang GX, Zheng KF, Zhang WP (2010). Mass-density relationship changes along salinity gradient in Suaeda salsa L. Acta Physiologiae Plantarum, 32, 1031-1037.
DOI URL |
[82] |
Zhang WP, Jia X, Bai YY, Wang GX (2011). The difference between above- and below-ground self-thinning lines in forest communities. Ecological Research, 26, 819-825.
DOI URL |
[83] |
Zhang WP, Jia X, Damgaard C, Morris EC, Bai YY, Pan S, Wang GX (2013). The interplay between above- and below-ground interactions along an environmental gradient: insights from two-layer zone-of-influence models. Oikos, doi: 10.1111/j.1600-0706.2012.20877x.
DOI URL PMID |
[84] |
Zhang WP, Jia X, Morris EC, Bai YY, Wang GX (2012). Stem, branch and leaf biomass-density relationships in forest communities. Ecological Research, 27, 819-825.
DOI URL |
[85] | Zhang WP, Wang GX (2010). Positive interactions in plant communities. Acta Ecologica Sinica, 30, 5371-5380. (in Chinese with English abstract) |
[ 张炜平, 王根轩 (2010). 植物邻体间的正相互作用. 生态学报, 30, 5371-5380.] | |
[86] |
Zhou SR, Zhang DY (2008). A nearly neutral model of biodiversity. Ecology, 89, 248-258.
DOI URL PMID |
[1] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[2] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[3] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[6] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[7] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[8] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[9] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[10] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[11] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[12] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[13] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[14] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[15] | 朱芩, 宁盼, 侯琳, 郝家田, 胡云云. 三江源地区刺柏属植物群落类型特征[J]. 植物生态学报, 2022, 46(1): 114-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19