植物生态学报 ›› 2013, Vol. 37 ›› Issue (11): 988-997.DOI: 10.3724/SP.J.1258.2013.00102
所属专题: 青藏高原植物生态学:植物-土壤-微生物
徐丽1,2,于书霞1,何念鹏2,*(),温学发2,石培礼2,张扬建2,代景忠3,王若梦2
收稿日期:
2013-05-22
接受日期:
2013-10-05
出版日期:
2013-05-22
发布日期:
2013-11-06
通讯作者:
何念鹏
基金资助:
XU Li1,2,YU Shu-Xia1,HE Nian-Peng2,*(),WEN Xue-Fa2,SHI Pei-Li2,ZHANG Yang-Jian2,DAI Jing-Zhong3,WANG Ruo-Meng2
Received:
2013-05-22
Accepted:
2013-10-05
Online:
2013-05-22
Published:
2013-11-06
Contact:
HE Nian-Peng
摘要:
青藏高原具有独特的海拔、气候和生态系统类型, 弄清其土壤有机质分解及其温度敏感性对于揭示青藏高原土壤碳储量变化及其碳汇功能具有重要意义。该文利用青藏高原西北部草地的11个封育-自由放牧成对草地, 通过测定不同温度(5、10、15、20和25 ℃)培养下的土壤碳矿化速率, 探讨了土地利用方式对该地区土壤碳矿化及其温度敏感性的影响。实验结果表明: 温度对青藏高原高寒草地的土壤碳矿化具有显著影响, 温度越高土壤碳矿化量越大。从东至西, 土壤碳矿化量逐渐降低。草地土壤碳矿化量与土壤有机碳和土壤全氮含量显著正相关; 即土壤有机碳和土壤全氮含量越高, 土壤碳矿化量就越高。土地利用方式对土壤碳矿化的温度敏感性(Q10)无显著影响, Q10值变化范围为1.4-2.4; 其中, 放牧草地Q10的平均值为1.83, 封育草地Q10的平均值为1.86。此外, Q10与土壤有机碳和土壤全氮含量无显著的相关关系, 也无明显的空间格局。放牧和封育对青藏高原高寒草地土壤碳矿化的温度敏感性无显著影响, 为深入分析青藏高原土壤碳汇功能及其对未来气温升高的响应提供了重要的理论依据。
徐丽,于书霞,何念鹏,温学发,石培礼,张扬建,代景忠,王若梦. 青藏高原高寒草地土壤碳矿化及其温度敏感性. 植物生态学报, 2013, 37(11): 988-997. DOI: 10.3724/SP.J.1258.2013.00102
XU Li,YU Shu-Xia,HE Nian-Peng,WEN Xue-Fa,SHI Pei-Li,ZHANG Yang-Jian,DAI Jing-Zhong,WANG Ruo-Meng. Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2013, 37(11): 988-997. DOI: 10.3724/SP.J.1258.2013.00102
实验样点 Experimental site | 封育草地 Fenced grassland (FG) | 自由放牧草地 Grazing grassland (GG) | |||
---|---|---|---|---|---|
经度 Longitude (E) | 纬度 Latitude (N) | 经度 Longitude (E) | 纬度 Latitude (N) | ||
样点1 Site 1 | 91.973 1° | 31.383 5° | 91.962 4° | 31.376 4° | |
样点2 Site 2 | 91.723 8° | 31.619 2° | 91.719 8° | 31.608 2° | |
样点3 Site 3 | 91.907 8° | 32.302 9° | 91.910 5° | 32.305 0° | |
样点4 Site 4 | 90.459 8° | 31.364 4° | 90.399 0° | 31.374 5° | |
样点5 Site 5 | 90.055 3° | 31.497 4° | 90.055 6° | 31.497 8° | |
样点6 Site 6 | 90.244 1° | 31.391 1° | 90.244 4° | 31.391 4° | |
样点7 Site 7 | 86.653 3° | 32.337 9° | 86.653 6° | 32.338 2° | |
样点8 Site 8 | 86.796 9° | 31.752 9° | 86.797 2° | 31.753 2° | |
样点9 Site 9 | 85.839 5° | 31.924 6° | 85.840 0° | 31.924 9° | |
样点10 Site 10 | 82.910 0° | 32.380 9° | 82.910 6° | 32.381 2° | |
样点11 Site 11 | 81.828 2° | 32.074 8° | 81.828 4° | 32.075 3° |
表1 实验样点的地理位置
Table 1 Geographical locations of experimental sites
实验样点 Experimental site | 封育草地 Fenced grassland (FG) | 自由放牧草地 Grazing grassland (GG) | |||
---|---|---|---|---|---|
经度 Longitude (E) | 纬度 Latitude (N) | 经度 Longitude (E) | 纬度 Latitude (N) | ||
样点1 Site 1 | 91.973 1° | 31.383 5° | 91.962 4° | 31.376 4° | |
样点2 Site 2 | 91.723 8° | 31.619 2° | 91.719 8° | 31.608 2° | |
样点3 Site 3 | 91.907 8° | 32.302 9° | 91.910 5° | 32.305 0° | |
样点4 Site 4 | 90.459 8° | 31.364 4° | 90.399 0° | 31.374 5° | |
样点5 Site 5 | 90.055 3° | 31.497 4° | 90.055 6° | 31.497 8° | |
样点6 Site 6 | 90.244 1° | 31.391 1° | 90.244 4° | 31.391 4° | |
样点7 Site 7 | 86.653 3° | 32.337 9° | 86.653 6° | 32.338 2° | |
样点8 Site 8 | 86.796 9° | 31.752 9° | 86.797 2° | 31.753 2° | |
样点9 Site 9 | 85.839 5° | 31.924 6° | 85.840 0° | 31.924 9° | |
样点10 Site 10 | 82.910 0° | 32.380 9° | 82.910 6° | 32.381 2° | |
样点11 Site 11 | 81.828 2° | 32.074 8° | 81.828 4° | 32.075 3° |
实验样点 Experimental site | 优势植被 Dominant vegetation | 土地利用方式 Land-use type | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | pH |
---|---|---|---|---|---|
样点1 Site 1 | 高山嵩草 | 封育草地 Fenced grassland | 19.04 ± 0.04a | 1.52 ± 0.02a | 8.04 ± 0.12a |
Kobresia pygmaea | 自由放牧草地 Grazing grassland | 10.30 ± 0.01b | 0.94 ± 0.01b | 8.33 ± 0.36a | |
样点2 Site 2 | 高山嵩草 | 封育草地 Fenced grassland | 24.42 ± 0.08a | 1.91 ± 0.03a | 8.56 ± 0.52a |
K. pygmaea | 自由放牧草地 Grazing grassland | 13.31 ± 0.02b | 1.21 ± 0.08b | 7.77 ± 0.48a | |
样点3 Site 3 | 高山嵩草 | 封育草地 Fenced grassland | 11.76 ± 0.01a | 1.05 ± 0.00a | 8.43 ± 0.05a |
K. pygmaea | 自由放牧草地 Grazing grassland | 11.12 ± 0.01b | 1.13 ± 0.01b | 7.78 ± 0.41a | |
样点4 Site 4 | 紫花针茅 | 封育草地 Fenced grassland | 12.27 ± 0.03a | 1.18 ± 0.03a | 7.79 ± 0.57a |
Stipa purpurea | 自由放牧草地 Grazing grassland | 10.23 ± 0.01b | 1.09 ± 0.03b | 8.38 ± 0.19a | |
样点5 Site 5 | 紫花针茅和羊草 | 封育草地 Fenced grassland | 10.31 ± 0.09a | 1.04 ± 0.04a | 9.07 ± 0.02a |
S. purpurea and Leymus chinensis | 自由放牧草地 Grazing grassland | 8.92 ± 0.07a | 1.14 ± 0.05b | 8.53 ± 0.55a | |
样点6 Site 6 | 紫花针茅 | 封育草地 Fenced grassland | 8.96 ± 0.06a | 0.97 ± 0.01a | 7.83 ± 0.30a |
S. purpurea | 自由放牧草地 Grazing grassland | 12.17 ± 0.03b | 1.21 ± 0.03b | 8.33 ± 0.22a | |
样点7 Site 7 | 紫花针茅 | 封育草地 Fenced grassland | 6.40 ± 0.16a | 0.71 ± 0.04a | 9.94 ± 0.01a |
S. purpurea | 自由放牧草地 Grazing grassland | 3.95 ± 0.06b | 0.70 ± 0.03a | 10.09 ± 0.02b | |
样点8 Site 8 | 紫花针茅 | 封育草地 Fenced grassland | 13.36 ± 0.13a | 2.14 ± 0.05a | 8.73 ± 0.03a |
S. purpurea | 自由放牧草地 Grazing grassland | 10.14 ± 0.13b | 1.39 ± 0.08b | 8.53 ± 0.03b | |
样点9 Site 9 | 紫花针茅和薹草 | 封育草地 Fenced grassland | 6.70 ± 0.31a | 0.99 ± 0.03a | 9.28 ± 0.03a |
S. purpurea and Carex moorcroftii | 自由放牧草地 Grazing grassland | 6.91 ± 0.10a | 1.03 ± 0.09a | 8.94 ± 0.04b | |
样点10 Site 10 | 沙生针茅和羽状针茅 | 封育草地 Fenced grassland | 17.40 ± 0.13a | 1.23 ± 0.05a | 8.62 ± 0.09a |
S. purpurea and S. pennata | 自由放牧草地 Grazing grassland | 11.89 ± 0.16b | 0.94 ± 0.02b | 8.82 ± 0.03b | |
样点11 Site 11 | 沙生针茅和羽状针茅 | 封育草地 Fenced grassland | 3.76 ± 0.31a | 0.59 ± 0.06a | 9.12 ± 0.01a |
S. purpurea and S. pennata | 自由放牧草地 Grazing grassland | 6.55 ± 0.17a | 0.79 ± 0.06b | 9.05 ± 0.03b |
表2 实验样地的优势植被和土壤特征(平均值±标准偏差, n = 4)
Table 2 The dominant vegetation and soil properties on experimental sites (mean ± SD, n = 4)
实验样点 Experimental site | 优势植被 Dominant vegetation | 土地利用方式 Land-use type | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | pH |
---|---|---|---|---|---|
样点1 Site 1 | 高山嵩草 | 封育草地 Fenced grassland | 19.04 ± 0.04a | 1.52 ± 0.02a | 8.04 ± 0.12a |
Kobresia pygmaea | 自由放牧草地 Grazing grassland | 10.30 ± 0.01b | 0.94 ± 0.01b | 8.33 ± 0.36a | |
样点2 Site 2 | 高山嵩草 | 封育草地 Fenced grassland | 24.42 ± 0.08a | 1.91 ± 0.03a | 8.56 ± 0.52a |
K. pygmaea | 自由放牧草地 Grazing grassland | 13.31 ± 0.02b | 1.21 ± 0.08b | 7.77 ± 0.48a | |
样点3 Site 3 | 高山嵩草 | 封育草地 Fenced grassland | 11.76 ± 0.01a | 1.05 ± 0.00a | 8.43 ± 0.05a |
K. pygmaea | 自由放牧草地 Grazing grassland | 11.12 ± 0.01b | 1.13 ± 0.01b | 7.78 ± 0.41a | |
样点4 Site 4 | 紫花针茅 | 封育草地 Fenced grassland | 12.27 ± 0.03a | 1.18 ± 0.03a | 7.79 ± 0.57a |
Stipa purpurea | 自由放牧草地 Grazing grassland | 10.23 ± 0.01b | 1.09 ± 0.03b | 8.38 ± 0.19a | |
样点5 Site 5 | 紫花针茅和羊草 | 封育草地 Fenced grassland | 10.31 ± 0.09a | 1.04 ± 0.04a | 9.07 ± 0.02a |
S. purpurea and Leymus chinensis | 自由放牧草地 Grazing grassland | 8.92 ± 0.07a | 1.14 ± 0.05b | 8.53 ± 0.55a | |
样点6 Site 6 | 紫花针茅 | 封育草地 Fenced grassland | 8.96 ± 0.06a | 0.97 ± 0.01a | 7.83 ± 0.30a |
S. purpurea | 自由放牧草地 Grazing grassland | 12.17 ± 0.03b | 1.21 ± 0.03b | 8.33 ± 0.22a | |
样点7 Site 7 | 紫花针茅 | 封育草地 Fenced grassland | 6.40 ± 0.16a | 0.71 ± 0.04a | 9.94 ± 0.01a |
S. purpurea | 自由放牧草地 Grazing grassland | 3.95 ± 0.06b | 0.70 ± 0.03a | 10.09 ± 0.02b | |
样点8 Site 8 | 紫花针茅 | 封育草地 Fenced grassland | 13.36 ± 0.13a | 2.14 ± 0.05a | 8.73 ± 0.03a |
S. purpurea | 自由放牧草地 Grazing grassland | 10.14 ± 0.13b | 1.39 ± 0.08b | 8.53 ± 0.03b | |
样点9 Site 9 | 紫花针茅和薹草 | 封育草地 Fenced grassland | 6.70 ± 0.31a | 0.99 ± 0.03a | 9.28 ± 0.03a |
S. purpurea and Carex moorcroftii | 自由放牧草地 Grazing grassland | 6.91 ± 0.10a | 1.03 ± 0.09a | 8.94 ± 0.04b | |
样点10 Site 10 | 沙生针茅和羽状针茅 | 封育草地 Fenced grassland | 17.40 ± 0.13a | 1.23 ± 0.05a | 8.62 ± 0.09a |
S. purpurea and S. pennata | 自由放牧草地 Grazing grassland | 11.89 ± 0.16b | 0.94 ± 0.02b | 8.82 ± 0.03b | |
样点11 Site 11 | 沙生针茅和羽状针茅 | 封育草地 Fenced grassland | 3.76 ± 0.31a | 0.59 ± 0.06a | 9.12 ± 0.01a |
S. purpurea and S. pennata | 自由放牧草地 Grazing grassland | 6.55 ± 0.17a | 0.79 ± 0.06b | 9.05 ± 0.03b |
样点 Site | 培养7天 | 培养56天 | |||
---|---|---|---|---|---|
Incubation for 7 d | Incubation for 56 d | ||||
D 值 | p值 | D 值 | p值 | ||
D value | p value | D value | p value | ||
(μg C·g-1 soil) | (μg C·g-1 soil) | ||||
样点1 Site 1 | 25.92 | 0.023 | 148.99 | 0.012 | |
样点2 Site 2 | 39.38 | 0.02 | 218.41 | 0.018 | |
样点3 Site 3 | -0.63 | 0.8 | -41.79 | 0.091 | |
样点4 Site 4 | 7.68 | 0.008 | 50.23 | 0.011 | |
样点5 Site 5 | 9.96 | 0.003 | 70.45 | 0.006 | |
样点6 Site 6 | -9.81 | 0.01 | -85.59 | 0.003 | |
样点7 Site 7 | 1.7 | 0.047 | 31.94 | 0.123 | |
样点8 Site 8 | 3.75 | 0.325 | 69.53 | 0.005 | |
样点9 Site 9 | 5.75 | 0.064 | 58.81 | 0.009 | |
样点10 Site 10 | 15.86 | 0 | 63.21 | 0.009 | |
样点11 Site 11 | -8.36 | 0.024 | -80.58 | 0.012 |
表3 实验样点间土壤碳矿化差异性比较
Table 3 Comparison of soil C mineralization across experimental sites
样点 Site | 培养7天 | 培养56天 | |||
---|---|---|---|---|---|
Incubation for 7 d | Incubation for 56 d | ||||
D 值 | p值 | D 值 | p值 | ||
D value | p value | D value | p value | ||
(μg C·g-1 soil) | (μg C·g-1 soil) | ||||
样点1 Site 1 | 25.92 | 0.023 | 148.99 | 0.012 | |
样点2 Site 2 | 39.38 | 0.02 | 218.41 | 0.018 | |
样点3 Site 3 | -0.63 | 0.8 | -41.79 | 0.091 | |
样点4 Site 4 | 7.68 | 0.008 | 50.23 | 0.011 | |
样点5 Site 5 | 9.96 | 0.003 | 70.45 | 0.006 | |
样点6 Site 6 | -9.81 | 0.01 | -85.59 | 0.003 | |
样点7 Site 7 | 1.7 | 0.047 | 31.94 | 0.123 | |
样点8 Site 8 | 3.75 | 0.325 | 69.53 | 0.005 | |
样点9 Site 9 | 5.75 | 0.064 | 58.81 | 0.009 | |
样点10 Site 10 | 15.86 | 0 | 63.21 | 0.009 | |
样点11 Site 11 | -8.36 | 0.024 | -80.58 | 0.012 |
源 Source | 培养7天的土壤碳矿化累积量 Accumulative soil C mineralization over a 7-day duration | 培养56天的土壤碳矿化累积量 Accumulative soil C mineralization over a 56-day duration | |||
---|---|---|---|---|---|
F值 F value | p值 p value | F值 F value | p值 p value | ||
土地利用方式 Land use type (L) | 24.086 | <0.000 1 | 19.695 | <0.000 1 | |
温度 Temperature (T) | 138.987 | <0.000 1 | 112.975 | <0.000 1 | |
L × T | 1.282 | 0.276 | 0.763 | 0.550 |
表4 土地利用方式和培养温度对土壤碳矿化的影响
Table 4 Effects of land use type and incubation temperature on the accumulative soil C mineralization
源 Source | 培养7天的土壤碳矿化累积量 Accumulative soil C mineralization over a 7-day duration | 培养56天的土壤碳矿化累积量 Accumulative soil C mineralization over a 56-day duration | |||
---|---|---|---|---|---|
F值 F value | p值 p value | F值 F value | p值 p value | ||
土地利用方式 Land use type (L) | 24.086 | <0.000 1 | 19.695 | <0.000 1 | |
温度 Temperature (T) | 138.987 | <0.000 1 | 112.975 | <0.000 1 | |
L × T | 1.282 | 0.276 | 0.763 | 0.550 |
图2 土壤碳矿化与土壤有机碳含量、总氮含量、植物地上生物量的关系。
Fig. 2 Relationships of soil C mineralization with soil organic carbon content (SOC), soil total nitrogen content (STN) and aboveground biomass of plants.
图4 温度敏感性(Q10)与土壤有机碳含量、总氮含量以及植物地上生物量间的关系。
Fig. 4 Relationships of temperature sensitivity (Q10) with soil organic carbon content (SOC), soil total nitrogen content (STN) and aboveground biomass of plants.
[1] | Ai L, Wu JG, Zhu G, Liu JQ, Tian ZQ, Chang W, Xia X (2007). The mineralization of alpine meadow soil organic carbon and factors influencing it in the Qilian Mountain. Acta Prataculturae Sinica, 16(5), 22-33. (in Chinese with English abstract) |
[ 艾丽, 吴建国, 朱高, 刘建泉, 田自强, 苌伟, 夏新 (2007). 祁连山中部高山草甸土壤有机碳矿化及其影响因素研究. 草业学报, 16(5), 22-33.] | |
[2] |
Arevalo C, Chang SX, Bhatti JS, Sidder D (2012). Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the Parkland Region of Alberta, Canada. Soil Science Society of America Journal, 76, 241-251.
DOI URL |
[3] | Bai JB, Xu XL, Song MH, He YT, Jiang J, Shi PL (2011). Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences, 20, 855-859. (in Chinese with English abstract) |
[ 白洁冰, 许兴良, 宋明华, 何永涛, 蒋婧, 石培礼 (2007). 温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响. 生态环境学报, 20, 855-859.] | |
[4] |
Chatterjee A, Vance GF, Pendall E, Stahl PD (2008). Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology & Biochemistry, 40, 1901-1907.
DOI URL |
[5] | Chen QS, Li LH, Han XG, Dong YS, Wang ZP, Xiong XG, Yan ZD (2004a). Acclimatization of soil respiration to warming. Acta Ecological Sinica, 24, 2649-2655. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 董云社, 王智平, 熊小刚, 阎志丹 (2004a. 土壤呼吸对温度升高的适应. 生态学报, 24, 2649-2655.] | |
[6] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Xiong XG, Chen SP, Zhang LX, Gao YZ, Tang F, Yang J, Dong YS (2004b). Temperature sensitivity of soil respira- tion in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica, 24, 831-836. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社 (2004b). 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24, 831-836.] | |
[7] |
Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JAM, Bradford MA (2011). Temperature and soil organic matter decomposition rates―synthesis of current know- ledge and a way forward. Global Change Biology, 17, 3392-3404.
DOI URL |
[8] |
Dai JZ, Wei ZJ, He NP, Wang RM, Wen XH, Zhang YH, Zhao XN, Yu GR (2012). Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China. Chinese Journal of Plant Ecology, 36, 1226-1236. (in Chinese with English abstract)
DOI URL |
[ 代景忠, 卫智军, 何念鹏, 王若梦, 温学华, 张云海, 赵小宁, 于贵瑞 (2012). 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响. 植物生态学报, 36, 1226-1236.]
DOI URL |
|
[9] | Fan ZP, Wang H, Deng DZ, Sun XK, Gao JG, Zeng DH (2008). Measurement methods of soil heterotrophic respiration and key factors affecting the temperature sensitivity of the soil heterotrophic respiration. Chinese Journal of Ecology, 27, 1221-1226. (in Chinese with English abstract) |
[ 范志平, 王红, 邓东周, 孙学凯, 高俊刚, 曾德慧 (2008). 土壤异养呼吸的测定及其温度敏感性影响因子. 生态学杂志, 27, 1221-1226.] | |
[10] |
Frank AB, Liebig MA, Hanson JD (2002). Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology & Biochemistry, 34, 1235-1241.
DOI URL |
[11] |
Gao QZ, Li YE, Lin ED, Jiangcun WZ, Wan YF, Xiong W, Wang BS, Li WF (2005). Temporal and spatial distribution of grassland degradation in Northern Tibet. Acta Geographica Sinica, 60, 87-95. (in Chinese with English abstract)
DOI URL |
[ 高清竹, 李玉娥, 林而达, 江村旺扎, 万运帆, 熊伟, 王宝山, 李文福 (2005). 藏北地区草地退化的时空分布特征. 地理学报, 60, 87-95.]
DOI URL |
|
[12] |
Gershenson A, Bader NE, Cheng WX (2009). Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 15, 176-183.
DOI URL |
[13] |
Hashimoto S, Tanaka N, Suzuki M, Inoue A, Takizawa H, Kosaka I, Tanaka K, Tantasirin C, Tangtham N (2004). Soil respiration and soil CO2 concentration in a tropical forest, Thailand. Journal of Forest Research, 9, 75-79.
DOI URL |
[14] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climatic Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[15] |
Jenkinson D, Adams D, Wild A (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304-306.
DOI URL |
[16] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI URL PMID |
[17] | Liao Y, Yang ZF, Xia XQ, Jiang HC (2011). Research on temperature sensitivity of soil respiration and different active organic carbon fractions of Qinghai-Tibet Plateau permafrost. Earth Science Frontiers, 18, 85-93. (in Chinese with English abstract) |
[ 廖艳, 杨忠芳, 夏学齐, 蒋宏忱 (2011). 青藏高原冻土土壤呼吸温度敏感性和不同活性有机碳组分研究. 地学前缘, 18, 85-93.] | |
[18] | Liu SH, Fang JY (1997). Effect factors of soil respiration and the temperatures effects on soil respiration in the global scale. Acta Ecological Sinica, 17, 19-26. (in Chinese with English abstract) |
[ 刘绍辉, 方精云 (1997). 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17, 19-26.] | |
[19] | Liu YP, Tang YP, Lu Q, Gao R (2011). Effects of temperature and land use change on soil organic carbon mineralization. Journal of Anhui Agricultural Science, 39, 3896-3927. (in Chinese with English abstract) |
[ 刘燕萍, 唐英平, 卢茜, 高人 (2011). 温度和土地利用变化对土壤有机碳矿化的影响. 安徽农业科学, 39, 3896-3927.] | |
[20] |
Luan JW, Xiang CH, Luo ZS, Gong YB (2006). Research advances in forest soil respiration. Chinese Journal of Applied Ecology, 17, 2451-2456.
URL PMID |
[ 栾军伟, 向成华, 骆宗诗, 宫渊波 (2006). 森林土壤呼吸研究进展. 应用生态学报, 17, 2451-2456.]
URL PMID |
|
[21] |
Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840.
URL PMID |
[22] | Qiao CL, Li JM, Wang JH, Ge SD, Zhao L, Xu SX (2012). Advances on carbon dioxide fluxes of alpine meadow ecosystems on the Tibetan Plateau. Pratacultural Science, 29, 204-210. (in Chinese with English abstract) |
[ 乔春连, 李婧梅, 王基恒, 葛世栋, 赵亮, 徐世晓 (2012). 青藏高原高寒草甸生态系统CO2通量研究进展. 草业科学, 29, 204-210.] | |
[23] |
Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3-27.
DOI URL |
[24] |
Sierra CA (2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry, 108, 1-15.
DOI URL |
[25] |
Vanhala P, Karhu K, Tuomi M, Bjorklof K, Fritze H, Liski J (2008). Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. Soil Biology & Biochemistry, 40, 1758-1764.
DOI URL |
[26] |
von Lützow M, Kögel-Knabner I (2009). Temperature sensitivity of soil organic matter decomposition―What do we know? Biology and Fertility of Soils, 46, 1-15.
DOI URL |
[27] | Wang GX, Cheng GD, Shen YP (2002). Soil organic carbon pool of grasslands on the Tibetan plateau and its global implication. Journal of Glaciology and Geocryology, 24, 693-700. (in Chinese with English abstract) |
[ 王根绪, 程国栋, 沈永平 (2002). 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 24, 693-700.] | |
[28] | Wang QK, Wang SL, Yu XJ, Zhang J, Liu YX (2007). Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broadleaved forest and Chinese fir plantation. Chinese Journal of Ecology, 26, 1918-1923. (in Chinese with English abstract) |
[ 王清奎, 汪思龙, 于小军, 张剑, 刘燕新 (2007). 常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响. 生态学杂志, 26, 1918-1923.] | |
[29] | Wang RM, Dong KH, He NP, Zhu JX, Dai JZ, Shi KK (2013). Effect of enclosure on soil C mineralization and priming effect in Stipa grandis grassland of Inner Mongolia. Acta Ecological Sinica, 33, 3622-3629. (in Chinese with English abstract) |
[ 王若梦, 董宽虎, 何念鹏, 朱剑兴, 代景忠, 施侃侃 (2013). 围封对内蒙古大针茅草地土壤碳矿化及其激发效应的影响. 生态学报, 33, 3622-3629. | |
[30] |
Wetterstedt JÅM, Persson T, Ågren GI (2010). Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology, 16, 1806-1819.
DOI URL |
[31] |
Wu HB, Guo ZG, Peng CH (2003). Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9, 305-315.
DOI URL |
[32] | Wu JG, Ai L, Chang W (2007). Soil organic carbon mineralization and its affecting factors under four typical vegetations in mid Qilian Mountains. Chinese Journal of Ecology, 26, 1703-1711. (in Chinese with English abstract) |
[ 吴建国, 艾丽, 苌伟 (2007). 祁连山中部四种典型生态系统土壤有机碳矿化及其影响因素. 生态学杂志, 26, 1703-1711.] | |
[33] | Yang K, Gao QZ, Li YE, Lin ED, Sheng WP, Jiangcun WZ, Wang BS, Li WF (2007). Spatial distribution of grassland degradation and trend in northern Tibet. Advances in Earth Science, 22, 410-416. (in Chinese with English abstract) |
[ 杨凯, 高清竹, 李玉娥, 林而达, 盛文萍, 江村旺扎, 王宝山, 李文福 (2007). 藏北地区草地退化空间特征及其趋势分析. 地球科学进展, 22, 410-416.] | |
[34] |
Yang Y, Huang M, Liu HS, Liu HJ (2011). The interrelation between temperature sensitivity and adaptability of soil respiration. Journal of Natural Resources, 26, 1811-1820. (in Chinese with English abstract)
DOI URL |
[ 杨毅, 黄玫, 刘洪升, 刘华杰 (2011). 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 26, 1811-1820.]
DOI URL |
|
[35] | Zhang JB, Song CC, Yang WY (2005). Temperature sensitivity of soil respiration and its effecting factors in the different land use. Acta Scientiae Circumstantiae, 25, 1537-1542. (in Chinese with English abstract) |
[ 张金波, 宋长春, 杨文燕 (2005). 不同土地利用下土壤呼吸温度敏感性差异及影响因素分析. 环境科学学报, 25, 1537-1542.] | |
[36] |
Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[12] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[13] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19