植物生态学报 ›› 2010, Vol. 34 ›› Issue (8): 973-978.DOI: 10.3773/j.issn.1005-264x.2010.08.010
收稿日期:
2009-10-20
接受日期:
2009-12-17
出版日期:
2010-10-20
发布日期:
2010-09-28
通讯作者:
谢永生
作者简介:
* E-mail: ysxie@ms.iswc.ac.cn
ZHANG Yi1,2, XIE Yong-Sheng2,*(), JU Yan2, WANG Hui2
Received:
2009-10-20
Accepted:
2009-12-17
Online:
2010-10-20
Published:
2010-09-28
Contact:
XIE Yong-Sheng
摘要:
以盛果期‘长枝富士’为试验材料, 以生产力调控翌年苹果(Malus pumila)树坐果期为主要观测期, 对不同生产力水平下果园土壤水分状况及苹果叶片光合特性进行了研究。结果表明: 在生产力调控范围内, 土壤剖面各个层次土壤含水量均随着生产力水平的减小而增加, 其中在60 cm处达到最大增量, 为31.02%; 而在600 cm范围内土壤贮水量最大能够提高15.41%。随着生产力水平的降低, “光合午休”现象减弱, 净光合速率(Pn)增加, 最大增幅为25.71%, 下午时段的蒸腾速率(Tr)下降迅速, 水分利用效率(WUE)最大提高34.12%。通过相关分析表明, 土壤贮水量(WSC)与Pn、Tr、WUE之间均达到显著相关, 其相关系数分别为: 0.973**、-0.543*和0.992**。土壤贮水量(x)与水分利用效率(y)之间符合y = 0.002 3x - 1.480 6, R2= 0.984 4**的回归模型。通过生产力调控可以改善土壤水分状况和果树光合能力, 提高WUE。
张义, 谢永生, 鞠艳, 王辉. 生产力调控对翌年苹果园土壤水分和苹果叶片光合特性的影响. 植物生态学报, 2010, 34(8): 973-978. DOI: 10.3773/j.issn.1005-264x.2010.08.010
ZHANG Yi, XIE Yong-Sheng, JU Yan, WANG Hui. Effects of controlling apple orchard productivity on soil moisture and photosynthetic characteristics. Chinese Journal of Plant Ecology, 2010, 34(8): 973-978. DOI: 10.3773/j.issn.1005-264x.2010.08.010
图1 生产力调控翌年果园土壤水分剖面分布。 I, II, III, IV, V, 定果量分别为3.6 × 105 ind·hm-2、3.15 × 105 ind·hm-2、2.7 × 105 ind·hm-2、2.25 × 105 ind·hm-2和1.8 × 105 ind·hm-2。
Fig. 1 The influence of controlling the productive level on soil moisture. I, II, III, IV, V, productivities is 3.6 × 105 ind·hm-2, 3.15 × 105 ind·hm-2, 2.7 × 105 ind·hm-2, 2.25 × 105 ind·hm-2 and 1.8 × 105 ind·hm-2.
土层深度Depth (cm) | 贮水量 Water storage capacity (mm) | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
0-100 | 201.62 | 211.53 | 228.36 | 237.35 | 241.50 |
100-200 | 201.59 | 213.57 | 221.35 | 235.02 | 231.89 |
200-300 | 168.99 | 175.59 | 192.07 | 196.84 | 207.71 |
300-400 | 175.04 | 177.40 | 193.14 | 188.49 | 197.22 |
400-500 | 181.81 | 175.83 | 192.73 | 191.56 | 198.95 |
500-600 | 189.17 | 185.07 | 201.71 | 206.61 | 213.23 |
0-600 | 1 118.22 | 1 139.00 | 1 229.37 | 1 255.88 | 1 290.50 |
表1 不同生产力水平土壤贮水量的差异(mm)
Table 1 The difference of the water storage capacity at different productive levels (mm)
土层深度Depth (cm) | 贮水量 Water storage capacity (mm) | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
0-100 | 201.62 | 211.53 | 228.36 | 237.35 | 241.50 |
100-200 | 201.59 | 213.57 | 221.35 | 235.02 | 231.89 |
200-300 | 168.99 | 175.59 | 192.07 | 196.84 | 207.71 |
300-400 | 175.04 | 177.40 | 193.14 | 188.49 | 197.22 |
400-500 | 181.81 | 175.83 | 192.73 | 191.56 | 198.95 |
500-600 | 189.17 | 185.07 | 201.71 | 206.61 | 213.23 |
0-600 | 1 118.22 | 1 139.00 | 1 229.37 | 1 255.88 | 1 290.50 |
图2 不同生产力水平果树净光合速率的日变化。 I、II、III、IV、V, 同图1。
Fig. 2 Diurnal variation of net photosynthetic rate (Pn) of apple in different controlling the productive level. I, II, III, IV, V, see Fig. 1.
图3 不同生产力水平果树蒸腾速率的日变化。 I、II、III、IV、V, 同图1。
Fig. 3 Diurnal change of transpiration rate (Tr) of apple in different controlling the productive level. I, II, III, IV, V, see Fig. 1.
图4 不同生产力水平果树水分利用效率的日变化。 I、II、III、IV、V, 同图1。
Fig. 4 Diurnal change of water use efficiency in different controlling the productive level. I, II, III, IV, V, see Fig. 1.
土壤贮水量 WSC | 净光合速率 Pn | 蒸腾速率 Tr | 水分利用效率 WUE | |
---|---|---|---|---|
WSC | 1.000 | 0.973** | -0.543* | 0.992** |
Pn | 0.973** | 1.000 | -0.352 | 0.946** |
Tr | -0.543* | -0.352 | 1.000 | -0.629* |
WUE | 0.992** | 0.946** | -0.629* | 1.000 |
表2 果园土壤水分状况与苹果叶片光合特性之间的Pear- son相关系数。
Table 2 The pearson correlation coefficient between water storage capacity and photosynthetic characteristics.
土壤贮水量 WSC | 净光合速率 Pn | 蒸腾速率 Tr | 水分利用效率 WUE | |
---|---|---|---|---|
WSC | 1.000 | 0.973** | -0.543* | 0.992** |
Pn | 0.973** | 1.000 | -0.352 | 0.946** |
Tr | -0.543* | -0.352 | 1.000 | -0.629* |
WUE | 0.992** | 0.946** | -0.629* | 1.000 |
[1] | Abed J, James A (2005). Flore application of ammonium thiosulfate for blossom thinning in apples. Scientia Horticulturae, 104, 161-168. |
[2] | Bai ZL (白志礼), Mu YM (穆养民), Zhao ZY (赵政阳) (2003). Consideration on development of apple industry in Shaanxi Province. Agricultural Research in the Arid Areas (干旱地区农业研究), 21(4), 172-175. (in Chinese with English Abstract) |
[3] | Cao SK (曹生奎), Feng Q (冯起), Si JH (司建华), Chang ZQ (常宗强), Zhuo macuo (卓玛错), Xi HY (席海洋), SU YH (苏永红) (2009). Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica (生态学报), 29, 3882-3892. (in Chinese with English Abstract) |
[4] | Dennis FG Jr (2000). The history of fruit thinning. Plant Growth Regulation, 31, 1-16. |
[5] | Fischer RA (1979). Growth and water limitations to dryland wheat in Australia: a physiological framework. Journal of the Australian Institute of Agricultural Science, 45, 83-94. |
[6] | Huang CY (黄昌勇) (2002). Pedology (土壤学). China Agriculture Press, Beijing. 99-102. (in Chinese) |
[7] | Jia HX (贾红霞) (2007). The technology of fruit thinning. Fruit Flower (果树花卉), (8), 21-22. (in Chinese) |
[8] | Li BZ (李丙智), Ruan BL (阮班录), Jun GR (君广仁), Zhang LS (张林森), Che YH (车玉红), Gao JJ (高建军) (2005). Effects of modifying tree form on photosynthetic ability and fruit quality of red Fuji apple. Journal of Northwest A & F University (Natural Science Edition) 西北农林科技大学学报(自然科学版)), 33(5), 119-122. (in Chinese with English Abstract) |
[9] | Li Y (李烨), Zhao HP (赵和平) (2008). The reasons and solutions in apple trees about high-yield and low-yield year. Yantai Fruits (烟台果树), (2), 13. (in Chinese) |
[10] | Qu GM (曲桂敏), Shen X (沈向), Wang HX (王鸿霞), Shu HR (束怀瑞) (2000). Study on diurnal variations of WUE and relevant parameters for different cultivars of apple trees. Journal of Fruit Science (果树学报), 17(1), 7-11. (in Chinese with English Abstract) |
[11] | Ran XT (冉辛拓), Zhang XS (张新生), Wang XJ (王学军) (2003). Effect of crop load on photosynthetic rate and dry matter production of apple. Acta Horticulturae Sinica (园艺学报), 30, 351. (in Chinese with English Abstract) |
[12] |
Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111-121.
URL PMID |
[13] | Schechter I, Proctor JTA, Elfving DC (1994). Apple fruit removal and limb girdling affect fruit and leaf characteristics. Journal of the American Society for Horticultural Science, 119, 157-162. |
[14] | Shao XW (邵玺文), Han M (韩梅), Han ZM (韩忠明), Kong WW (孔伟伟), Yang LM (杨利民) (2009). Relationship between diurnal changes of photosynthesis of Scutellaria baicalensis and environmental factors in different habitats. Acta Ecologica Sinica (生态学报), 29, 1470-1477. (in Chinese with English Abstract) |
[15] | Shu HR (束怀瑞) (1993). Physiology of Fruit Cultivation (果树栽培生理学). China Agriculture Press, Beijing. 6-8. (in Chinese) |
[16] | Xu HY (许海云) (2007). Thinning flower and fruit in apple. The Journal of Hebei Forestry Science and Technology (河北林业科技), (5), 87. (in Chinese) |
[17] | Zhang CX (张春霞), Hao MD (郝明德), Wei XR (魏孝荣) (2004). Soil water distribution characteristics of alfalfa with different planting years in the gully region of Loess Plateau. Plant Nutrition and Fertilizing Science (植物营养与肥料学报), 20, 604-607. (in Chinese with English Abstract) |
[18] | Zhang JG (张建国), Li JY (李吉跃), Shen GF (沈国舫) (2000). Characteristics and Mechanism of Cold-Resistant Trees (树木耐寒特性及其机理研究). China Forestry Publishing House, Beijing. 1-9. (in Chinese with English Abstract) |
[19] | Zhang Y (张义), Xie YS (谢永生), Hao MD (郝明德) (2009). Effect of controlling productivity on an apple orchard ecosystem. Acta Ecologica Sinica (生态学报), 29, 6811-6817. (in Chinese with English Abstract) |
[20] | Zou Q (邹琦) (1994). Crop Physiology and Ecology of Drought Resistance (作物抗旱生理生态研究). Shandong Science and Technology Press, Jinan. 155-242. (in Chinese) |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[4] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[7] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[10] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[11] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[14] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[15] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19