植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1369-1376.DOI: 10.3773/j.issn.1005-264x.2010.12.002
收稿日期:
2010-07-19
接受日期:
2010-09-26
出版日期:
2010-07-19
发布日期:
2010-12-28
通讯作者:
刘庆
作者简介:
(E-mail: liuqing@cib.ac.cn)
XIONG Pei1,2, XU Zhen-Feng1, LIN Bo1, LIU Qing1,*()
Received:
2010-07-19
Accepted:
2010-09-26
Online:
2010-07-19
Published:
2010-12-28
Contact:
LIU Qing
摘要:
冬季的土壤呼吸是生态系统呼吸的重要组成部分, 对气候变化的响应可能更为敏感。该文采用红外辐射加热器模拟土壤增温, 研究了岷江上游华山松(Pinus armandii)人工林冬季的土壤呼吸、微生物生物量及无机氮库对模拟增温的响应。结果表明: 在冬季(2009年11月-翌年3月), 模拟增温往往能显著提高土壤呼吸速率, 平均增幅达31.4%; 同样模拟增温使土壤微生物生物量碳、氮分别增加23.2%和22.7%, 而对微生物生物量碳氮比没有影响, 温度升高显著促进了微生物的生长, 但没有改变微生物的群落结构; 增温样地土壤的NO3 --N和NH4 +-N浓度较对照分别增加了38.5%和12.3%, 增温显著提高了土壤的可溶性无机氮含量。综上所述, 该区针叶林冬季土壤呼吸、微生物生长和养分矿化对未来气候变暖非常敏感。
熊沛, 徐振锋, 林波, 刘庆. 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 2010, 34(12): 1369-1376. DOI: 10.3773/j.issn.1005-264x.2010.12.002
XIONG Pei, XU Zhen-Feng, LIN Bo, LIU Qing. Short-term response of winter soil respiration to simulated warming in a Pinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology, 2010, 34(12): 1369-1376. DOI: 10.3773/j.issn.1005-264x.2010.12.002
[1] | Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry, 42, 611-617. |
[2] | Bronson DR, Gower ST, Tanner M, Linder S, Herk IV (2008). Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Global Change Biology, 14, 856-867. |
[3] |
Brooks PD, Mcknight D, Elder K (2004). Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biology, 11, 231-238.
DOI URL |
[4] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Dong YS (董云社), Wang ZP (王智平), Xiong XG (熊小刚), Yan ZD (阎志丹) (2004). Acclimatization of soil respiration to warming. Acta Ecologica Sinica (生态学报), 24, 2649-2655. (in Chinese with English abstract) |
[5] |
Elberling B (2007). Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type. Soil Biology and Biochemistry, 39, 646-654.
DOI URL |
[6] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33, 155-165.
DOI URL |
[7] |
Hartley IP, Heinemeyer A, Ineson P (2007). Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Global Change Biology, 13, 1761-1770.
DOI URL |
[8] | He JS, Wang YH, Jing X, Wang SP, Fang JY, Zeng H (2010). Experimental warming does not increase soil respiration over a three years period in Tibetan alpine grassland. The 95th ESA Annual Meeting, Pittsburgh, Pennsylvania, USA. |
[9] | Hubbard RM, Ryan MG, Elder K, Rhoades CC (2005). Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests. Biogeochemistry, 73, 93-107. |
[10] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: Pachauri RK, Reisinger A eds. Climate Changing 2007: Synthesis Report. Geneva, Switzerland. |
[11] |
Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918.
DOI URL |
[12] | Kato T, Hirota M, Tang YH, Cui XY, Li YN, Zhao XQ, Oikawa T (2005). Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau. Soil Biology and Biochemistry, 37, 1966-1969. |
[13] | Kimball BA (2005). Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11, 2041-2056. |
[14] | Koch O, Tscherko D, Kandeler E (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 21, GB4017, doi: 10.1029/2007GB002983. |
[15] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in tall grass prairie. Nature, 413, 622-625.
URL PMID |
[16] |
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate systems. Science, 298, 2173-2176.
DOI URL PMID |
[17] |
Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology and Biochemistry, 34, 1785-1795.
DOI URL |
[18] |
Muhr J, Borken W, Matzner E (2009). Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil. Global Change Biology, 15, 782-793.
DOI URL |
[19] |
Niinisto SM, Silvola J, Kellomaki S (2004). Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Global Change Biology, 10, 1363-1376.
DOI URL |
[20] | Niu SL (牛书丽), Han XG (韩兴国), Ma KP (马克平), Wan SQ (万师强) (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 262-271. (in Chinese with English abstract) |
[21] |
Qi Y, Xu M, Wu JG (2002). Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 153, 131-142.
DOI URL |
[22] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[23] | Rustad LE, Fernandez IJ (1998). Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology, 4, 597-605. |
[24] | Schimel JP, Fahnestock J, Michaelson G, Mikan C, Ping CL, Romanovsky VE, Welker J (2006). Cold-season production of CO2 in arctic soils: Can laboratory and field estimates be reconciled through a simple modeling approach? Arctic, Antarctic, and Alpine Research, 38, 249-256. |
[25] | Schindlbacher A, Boltenstern SZ, Glatzel G, Jandl R (2007). Winter soil respiration from an Austrian mountain forest. Agricultural and Forest Meteorology, 146, 205-215. |
[26] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[27] |
Shi Z (施政), Wang JS (汪家社), He R (何容), Wang GB (王国兵), Fang YH (方燕鸿), Xu ZK (徐自坤), Zhang ZX (张增信), Ruan HH (阮宏华) (2008). Seasonal variation and temperature sensitivity of soil respiration under different plant communities along an elevation gradient in Wuyi Mountains of China. Chinese Journal of Applied Ecology (应用生态学报), 19, 2357-2363. (in Chinese with English abstract)
URL PMID |
[28] | Sullivan PF, Welker JM, Arens SJT, Sveinbjörnsson B (2008). Continuous estimates of CO2 efflux from arctic and boreal soils during the snow-covered season in Alaska. Journal of Geophysical Research, 113, G04009, doi: 10.1029/ 2008JG000715. |
[29] | Volder A, Edwards EJ, Evans JR, Robertson BC, Schortemeyer M, Gifford RM (2004). Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric CO2? New Phytologist, 162, 397-411. |
[30] | Wan SQ, Norby RJ, Ledford J, Weltzin J (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424. |
[31] | Wang W, Peng SS, Wang T, Fang JY (2010). Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, north China. Soil Biology and Biochemistry, 42, 451-458. |
[32] | Wang W (王娓), Wang T (汪涛), Peng SS (彭书时), Fang JY (方精云) (2007). Review of winter CO2 efflux from soils: a key process of CO2 exchange between soil and atmosphere. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 394-402. (in Chinese with English abstract) |
[33] | Wickland KP, Striegl RG, Mast MA (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996- 1998. Global Biogeochemistry, 15, 321-335. |
[34] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[1] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[2] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[3] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
[4] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[5] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[6] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[7] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[8] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[9] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[10] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[11] | 管超, 张鹏, 李新荣. 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017, 41(3): 301-310. |
[12] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[13] | 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(5): 480-492. |
[14] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
[15] | 李铭, 朱利川, 张全发, 程晓莉. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6): 530-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19