植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1344-1351.DOI: 10.17521/cjpe.2016.0167
谷加存*, 王东男, 夏秀雪, 王韶仲
出版日期:
2016-12-31
发布日期:
2016-12-30
通讯作者:
谷加存
基金资助:
Jia-Cun GU*, Dong-Nan WANG, Xiu-Xue XIA, Shao-Zhong WANG
Online:
2016-12-31
Published:
2016-12-30
Contact:
Jia-Cun GU
摘要:
树木细根具有高度的结构和功能的异质性。近20年来, 人们逐渐认识到采用某一直径阈值来定义细根并开展研究的方法(即直径法)不能准确地描述相关的生理学和生态学过程。随着越来越多的研究证实根系功能与其分支等级密切相关, 根序划分的方法(即根序法)在根系研究中得到更多的应用。但是, 采用根序法测定相关功能属性需耗费大量的人力和时间。最近, 有研究者在结合直径法和根序法优点的基础上提出了功能划分的方法。该方法将传统的细根区分为吸收根和运输根, 在充分考虑根系结构和功能联系的同时, 又能兼顾研究工作的效率和结果间的可比性, 特别适用于根系生物量与周转的研究。采用功能划分方法来研究根系生物量(包括其他功能属性)是一个较新的观点, 研究结果的规律性和存在的主要问题仍有待总结。该文作者通过查阅近年来的相关研究报告发现吸收根与运输根生物量在树种间存在较大的差异, 目前对吸收根生物量在全球尺度上的变异格局并不清楚, 吸收根与运输根对细根生物量周转的相对贡献有待探究, 运输根在界定上存在着很大的挑战性。该文最后讨论了在根系研究中应用功能划分方法的优势与不足, 并提出了建议。
谷加存, 王东男, 夏秀雪, 王韶仲. 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 2016, 40(12): 1344-1351. DOI: 10.17521/cjpe.2016.0167
Jia-Cun GU, Dong-Nan WANG, Xiu-Xue XIA, Shao-Zhong WANG. Applications of functional classification methods for tree fine root biomass estimation: Advancements and synthesis. Chinese Journal of Plant Ecology, 2016, 40(12): 1344-1351. DOI: 10.17521/cjpe.2016.0167
图1 根系功能群及其对应的直径、根序、吸收能力和寿命的变化趋势。
Fig. 1 Root functional groups and the corresponding variations of root diameter, branch order, absorptive capacity and longevity.
1 | Campbell BD, Grime JP, Mackey JML (1991). A trade-off between scale and precision in resource foraging.Oecologia, 87, 532-538. |
2 | Chen HY, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span.Critical Reviews in Plant Sciences ,32, 151-161. |
3 | Dong XY, Wang HF, Gu JC, Wang Y, Wang ZQ (2015). Root morphology, anatomy and chemistry of nine fern species (pteridophyta) in a temperate forest.Plant and Soil, 393, 215-227. |
4 | Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide1 RT (2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.New Phytologist, 208, 114-24. |
5 | Espeleta JF, West JB, Donovan LA (2009). Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient.Ecology, 90, 1773-1787. |
6 | Fan PP, Guo DL (2010). Slow decomposition of lower order roots: A key mechanism of root carbon and nutrient retention in the soil.Oecologia, 163, 509-515. |
7 | Finér L, Helimisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce(Picea abies 141, 394-405. |
8 | Finér L, Ohashi M, Noguchi K, Hirano Y (2011a). Factors causing variation in fine root biomass in forest ecosystems.Forest Ecology and Management, 261, 265-277. |
9 | Finér L, Ohashi M, Noguchi K, Hirano Y (2011b). Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics.Forest Ecology and Management, 262, 2008-2023. |
10 | Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu WD, Jackson GB, Onipchenko VG, Soudzilovskaia NA, Tao JP, Conelissen HC (2013). Linking litter decomposi- tion of above- and below-ground organs to plant-soil feed- backs worldwide.Journal of Ecology ,101, 943-952. |
11 | Gaudinski JB, Torn MS, Riley WJ, Dawson TE, Joslin JD, Majdi H (2010). Measuring and modeling the spectrum of fine-root turnover times in three forests using isotopes, minirhizotrons, and the Radix model.Global Biogeo- chemical Cycles, 24, 1480-1493. |
12 | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems.New Phytologist ,147, 13-31. |
13 | Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011). Decomposi- tion of the finest root branching orders: Linking carbon and nutrient dynamics belowground to fine root function and structure.Ecological Monographs, 81, 89-102. |
14 | Gu JC, Sun Y, Yu SQ, Wang ZQ, Guo DL (2011). Influence of root structure on fine root survivorship: An analysis of 18 tree species using a minirhizotron method.Ecological Research, 26, 755-762. |
15 | Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species.Tree Physiology ,34, 415-425. |
16 | Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a). Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods.New Phytologist, 177, 443-456. |
17 | Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
18 | Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: Root branch order predominates.Journal of Ecology ,96, 737-745. |
19 | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008c). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species.New Phytologist, 180, 673-683. |
20 | He JS, Wang ZQ, Fang JY (2004). Issues and prospects of belowground ecology with special reference to global climate change.Chinese Science Bulletin, 49, 1891-1899. |
21 | Helmisaari HS, Ostonen I, Lõhmus K, Derome J, Lindroos AJ, Merilä P, Nöjd P (2009). Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.Tree Physiology, 29, 445-456. |
22 | Hertel D, Strecker T, Müller-Haubold H, Leuschner C, (2013). Fine root biomass and dynamics in beech forests across a precipitation gradient—Is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, 1183-1200. |
23 | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
24 | Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006). Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest.New Phytologist, 172, 523-535. |
25 | Kong DL, Li L, Ma CE, Chen XY, Zeng H, Guo DL (2014). Leading dimensions of root trait variation in subtropical forests.New Phytologist, 203, 863-872. |
26 | Kong DL, Ma CE (2014). Acquisition of ephemeral module in roots: A new view and test.Scientific Reports, 4, 1-4. |
27 | Kou L, Guo DL, Yang H, Gao WL, Li SG (2015). Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China.Plant and Soil, 391, 207-218. |
28 | Liao YC, McCormack ML, Fan HB, Wang HM, Wu LP, Tu J, Liu WF, Guo DL (2014). Relation of fine root distribution to soil C in aCunninghamia lanceolata plantation in subtropical China. Plant and Soil ,381, 225-234. |
29 | Liu B, He JX, Zeng FJ, Lei JQ, Arndt SK (2016). Life span and structure of ephemeral root modules of different functional groups from a desert system.New Phytologist, 211, 103-112. |
30 | Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.New Phytologist ,208, 125-136. |
31 | Liu JL (2008). Root Structure of Five Tree Species in Northeast China. Master degree dissertation, Northeast Forestry University, Harbin. [刘金梁(2008). 东北5个树种根系结构研究. 硕士学位论文, 东北林业大学, 哈尔滨.] |
32 | Liu YK, Fan C, Li XW, Ling YH, Zhou YG, Feng MS, Huang CD (2012). Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China. Chinese Journal of Plant Ecology, 36, 645-654.(in Chinese with English abstract) [刘运科, 范川, 李贤伟, 凌银花, 周义贵, 冯茂松, 黄从德 (2012). 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响. 植物生态学报, 36, 645-654.] |
33 | Long YQ, Kong DL, Chen ZX, Zeng H (2013). Variation of the linkage of root function with root branch order.PLOS ONE ,8, e57153. doi: 10.1371/journal.pone.0057153. |
34 | Lynch DJ, Matamala R, Iversen CM, Norby RJ, Gonzalez- Meler MA (2013). Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots.New Phytologist, 199, 420-430. |
35 | Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems.Plant and Soil, 276, 1-8. |
36 | Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forestNPP and soil C sequestration potential. Science ,302, 1385-1387. |
37 | McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees.New Phytologist,195, 823-831. |
38 | McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.New Phytologist, 207, 505-518. |
39 | McNickle GG, St. Clair CC, Cahill Jr. JF (2009). Focusing the metaphor: Plant root foraging behaviour.Trends in Ecology and Evolution, 24, 419-426. |
40 | Meier I, Leuschner C (2008). Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient.Global Change Biology ,14, 2081-2095. |
41 | Norby RJ, Jackson RB (2000). Root dynamics and global change: Seeking an ecosystem perspective.New Phyt- ologist, 147, 3-12. |
42 | Ostonen I, Helmisaari HS, Borken W, Tedersoo L, kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Löhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient.Global Change Biology, 17, 3620-3632. |
43 | Parton WJ, Hanson PJ, Swanston C, Torn M, Trumbore SE, Riley W, Kelly R (2010). ForCent model development and testing using the enriched background isotope study experiment.Journal of Geophysical Research-Biogeo- sciences, 115, 5613-5618. |
44 | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
45 | Silver WL, Miya RK (2001). Global patterns in root decomposition: Comparisons of climate and litter quality effects.Oecologia, 129, 407-419. |
46 | Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008). Irreconcilable differences: Fine-root life spans and |
47 | soil carbon persistence.Science, 319, 456. |
48 | Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008). Root anatomy, morphology, and longevity among root orders inVaccinium corymbosum(Ericaceae). American Journal of Botany, 95, 1506-1514. |
49 | Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2015). Aggregated and comple- mentary: Symmetric proliferation, overyielding, and mass effects explain fine-root biomass in soil patches in a diverse temperate deciduous forest landscape. New Phytologist ,205, 731-742. |
50 | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjor- nsen H (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species.Plant and Soil, 187, 159-219. |
51 | Wang ZQ, Guo DL, Wang XR, Gu JC, Mei L (2006). Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species.Plant and Soil, 288, 155-171. |
52 | Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a mul- tidimensional root trait framework: A tree root review.New Phytologist ,211, 1159-1169. doi: 10.1111/nph. 14003. |
53 | Wei X, Liu Y, Chen HB (2008). Anatomical and functional heterogeneity among different root orders ofPhellod- endron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247.(in Chinese with English abstract) [卫星, 刘颖, 陈海波 (2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.] |
54 | Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: A case study in peach,Prunus persica(Rosaceae). American Journal of Botany, 89, 79-87. |
55 | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees.Ecoogical Monographs, 76, 381-397. |
56 | Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules inFraxinus mandshurica. New Phytologist ,188, 1065-1074. |
57 | Yuan ZY, Chen Han YH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses.Critical Reviews in Plant Sciences, 29, 204-221. |
58 | Zadworny M, McCormack ML, Mucha J, Reich PB, Oleksyn J (2016). Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient.New Phytologist ,212, 389-399. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[10] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[11] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[12] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[13] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19