植物生态学报 ›› 2013, Vol. 37 ›› Issue (12): 1071-1079.DOI: 10.3724/SP.J.1258.2013.00110
• 研究论文 • 下一篇
马玉珠, 程栋梁*(), 钟全林, 靳冰洁, 徐朝斌, 胡波
收稿日期:
2013-07-08
接受日期:
2013-10-19
出版日期:
2013-07-08
发布日期:
2013-12-04
通讯作者:
程栋梁
作者简介:
* E-mail: chengdl02@aliyun.com基金资助:
MA Yu-Zhu, CHENG Dong-Liang*(), ZHONG Quan-Lin, JIN Bing-Jie, XU Chao-Bin, HU Bo
Received:
2013-07-08
Accepted:
2013-10-19
Online:
2013-07-08
Published:
2013-12-04
Contact:
CHENG Dong-Liang
摘要:
森林凋落物(litterfall)是森林植物在其生长发育过程中新陈代谢的产物, 在物质循环和能量流动方面起着重要作用。该文利用已发表的我国主要森林凋落物的研究数据, 分析了不同组分(叶、枝和繁殖器官)凋落物量之间及其与总凋落物量之间的异速比例关系。结果表明: 我国森林叶、枝和繁殖器官的平均凋落物量分别为3 810.34、1 019.07和767.95 kg·hm-2·a-1; 温度、降水量、林龄对森林凋落物量均有一定程度的影响, 其中温度对各组分凋落物量的影响最大。叶凋落物量(LL)与总凋落物量(LT)之间呈等速生长关系(LL ∝ LT0.96), 繁殖器官和枝的凋落物量(分别为LP和LB)与LT之间呈异速比例关系, 分别为LP ∝ LT1.84和LB ∝ LT1.61。不同组分凋落物量之间具有显著的异速比例关系, 其异速指数均小于1.0。不同林型(常绿林和落叶林)各组分凋落物量之间的异速比例关系无显著差异。了解不同组分凋落物量与总凋落物量之间的异速比例关系可以为更加精确地估算森林生产力提供理论依据。
马玉珠, 程栋梁, 钟全林, 靳冰洁, 徐朝斌, 胡波. 中国森林凋落物不同组分异速比例关系. 植物生态学报, 2013, 37(12): 1071-1079. DOI: 10.3724/SP.J.1258.2013.00110
MA Yu-Zhu, CHENG Dong-Liang, ZHONG Quan-Lin, JIN Bing-Jie, XU Chao-Bin, HU Bo. Allometric relationships among different components of forest litterfall in China. Chinese Journal of Plant Ecology, 2013, 37(12): 1071-1079. DOI: 10.3724/SP.J.1258.2013.00110
林型 Forest type | 组分 Component | 样本量 n | 平均值 Mean | 标准误 SE | 变幅 Range |
---|---|---|---|---|---|
常绿林 Evergreen forest | 叶 Leaves | 203 | 4 132 | 160.04 | 14, 13 592 |
枝 Branches | 200 | 1 176 | 62.18 | 1, 4 750 | |
繁殖器官 Propagules | 168 | 875 | 71.49 | 8, 4 816 | |
总量 Total | 203 | 6 015 | 217.78 | 46, 16 314 | |
落叶林 Deciduous forest | 叶 Leaves | 49 | 2 586 | 426.73 | 110, 13 090 |
枝 Branches | 45 | 230 | 44.03 | 1, 1 214 | |
繁殖器官 Propagules | 26 | 249 | 70.28 | 2, 1 678 | |
总量 Total | 49 | 2 929 | 468.29 | 110, 13 720 | |
总体 Whole | 叶 Leaves | 265 | 3 810 | 152.43 | 14, 13 592 |
枝 Branches | 258 | 1 019 | 65.62 | 1, 10 418 | |
繁殖器官 Propagules | 205 | 768 | 61.6 | 2, 4 816 | |
总量 Total | 265 | 5 397 | 210.54 | 46, 18 537 |
表1 不同林型不同组分凋落物量及总凋落物量概况
Table 1 Summary of litterfall production of different components and the total in different forest types (kg·hm-2·a-1)
林型 Forest type | 组分 Component | 样本量 n | 平均值 Mean | 标准误 SE | 变幅 Range |
---|---|---|---|---|---|
常绿林 Evergreen forest | 叶 Leaves | 203 | 4 132 | 160.04 | 14, 13 592 |
枝 Branches | 200 | 1 176 | 62.18 | 1, 4 750 | |
繁殖器官 Propagules | 168 | 875 | 71.49 | 8, 4 816 | |
总量 Total | 203 | 6 015 | 217.78 | 46, 16 314 | |
落叶林 Deciduous forest | 叶 Leaves | 49 | 2 586 | 426.73 | 110, 13 090 |
枝 Branches | 45 | 230 | 44.03 | 1, 1 214 | |
繁殖器官 Propagules | 26 | 249 | 70.28 | 2, 1 678 | |
总量 Total | 49 | 2 929 | 468.29 | 110, 13 720 | |
总体 Whole | 叶 Leaves | 265 | 3 810 | 152.43 | 14, 13 592 |
枝 Branches | 258 | 1 019 | 65.62 | 1, 10 418 | |
繁殖器官 Propagules | 205 | 768 | 61.6 | 2, 4 816 | |
总量 Total | 265 | 5 397 | 210.54 | 46, 18 537 |
图1 不同林型不同组分凋落物量百分比。总体=常绿林+落叶林+常绿落叶混交林。
Fig. 1 Percentage of litterfall production of different components in different forest types. Whole = evergreen forest + deciduous forest + evergreen-deciduous mixed forest.
log(T) | log(P) | log(A) | n | R2 | p | ||
---|---|---|---|---|---|---|---|
常数d Constant d | 系数a Coefficient a | 系数b Coefficient b | 系数c Coefficient c | ||||
log(L) = a log(T) + d | |||||||
叶 Leaves | -39.40 | 17.42 | 264 | 0.184 | <0.001 | ||
枝 Branches | -80.12 | 33.67 | 257 | 0.282 | <0.001 | ||
繁殖器官 Propagules | -80.18 | 33.62 | 204 | 0.243 | <0.001 | ||
总量 Total | -49.52 | 21.59 | 264 | 0.264 | <0.001 | ||
log(L) = b log(P) + d | |||||||
叶 Leaves | 0.70 | 0.88 | 257 | 0.138 | <0.001 | ||
枝 Branches | -3.68 | 2.05 | 250 | 0.330 | <0.001 | ||
繁殖器官 Propagules | -1.41 | 1.26 | 201 | 0.106 | <0.001 | ||
总量 Total | 0.21 | 1.08 | 257 | 0.197 | <0.001 | ||
log(L) = c log(A) + d | |||||||
叶 Leaves | 2.39 | 0.610 | 74 | 0.141 | 0.001 | ||
枝 Branches | 1.01 | 0.990 | 71 | 0.232 | <0.001 | ||
繁殖器官 Propagules | 1.19 | 0.650 | 49 | 0.123 | 0.014 | ||
总量 Total | 2.44 | 0.660 | 74 | 0.175 | <0.001 | ||
log(L) = a log(T) + b log(P) + c log(A) | |||||||
叶 Leaves | 0.301 | -0.216 | 0.352 | 70 | 0.118 | 0.039 | |
枝 Branches | 0.632 | 0.021 | 0.513 | 67 | 0.497 | <0.001 | |
繁殖器官 Propagules | 0.794 | -0.515 | 0.629 | 49 | 0.336 | <0.001 | |
总量 Total | 0.440 | -0.216 | 0.416 | 70 | 0.187 | 0.003 |
表2 不同组分凋落物量与年平均气温、年降水量、林龄的回归关系
Table 2 The regression relationships between litterfall production of different components (log(L), kg·hm–2·a–1) and annual mean air temperature (log(T), K), annual precipitation (log(P), mm), and stand age (log(A), a)
log(T) | log(P) | log(A) | n | R2 | p | ||
---|---|---|---|---|---|---|---|
常数d Constant d | 系数a Coefficient a | 系数b Coefficient b | 系数c Coefficient c | ||||
log(L) = a log(T) + d | |||||||
叶 Leaves | -39.40 | 17.42 | 264 | 0.184 | <0.001 | ||
枝 Branches | -80.12 | 33.67 | 257 | 0.282 | <0.001 | ||
繁殖器官 Propagules | -80.18 | 33.62 | 204 | 0.243 | <0.001 | ||
总量 Total | -49.52 | 21.59 | 264 | 0.264 | <0.001 | ||
log(L) = b log(P) + d | |||||||
叶 Leaves | 0.70 | 0.88 | 257 | 0.138 | <0.001 | ||
枝 Branches | -3.68 | 2.05 | 250 | 0.330 | <0.001 | ||
繁殖器官 Propagules | -1.41 | 1.26 | 201 | 0.106 | <0.001 | ||
总量 Total | 0.21 | 1.08 | 257 | 0.197 | <0.001 | ||
log(L) = c log(A) + d | |||||||
叶 Leaves | 2.39 | 0.610 | 74 | 0.141 | 0.001 | ||
枝 Branches | 1.01 | 0.990 | 71 | 0.232 | <0.001 | ||
繁殖器官 Propagules | 1.19 | 0.650 | 49 | 0.123 | 0.014 | ||
总量 Total | 2.44 | 0.660 | 74 | 0.175 | <0.001 | ||
log(L) = a log(T) + b log(P) + c log(A) | |||||||
叶 Leaves | 0.301 | -0.216 | 0.352 | 70 | 0.118 | 0.039 | |
枝 Branches | 0.632 | 0.021 | 0.513 | 67 | 0.497 | <0.001 | |
繁殖器官 Propagules | 0.794 | -0.515 | 0.629 | 49 | 0.336 | <0.001 | |
总量 Total | 0.440 | -0.216 | 0.416 | 70 | 0.187 | 0.003 |
图2 不同林型不同组分凋落物量与总凋落物量的线性关系。A, 常绿林。B, 落叶林。C, 常绿林+落叶林。LB, 枝凋落物; LL, 叶凋落物; LP, 繁殖器官凋落物; LT, 总凋落物。
Fig. 2 Linear relationships between litterfall production of different components and total litterfall production in different forest types. A, Evergreen forest. B, Deciduous forest. C, Evergreen forest + deciduous forest. LB, branch litterfall; LL, leaf litterfall; LP, propagule litterfall; LT, total litterfall.
林型 Forest type | 组分对比 Component comparison | 样本量 n | α (95%置信区间) α (95% confidence interval) | logβ (95%置信区间) logβ (95% confidence interval) | R2 |
---|---|---|---|---|---|
常绿林 Evergreen forest | LL ∝ LT | 203 | 1.05 (1.01, 1.09) | -0.36 (-0.51, -0.21) | 0.922** |
LB ∝ LT | 200 | 1.41 (1.28, 1.56) | -2.31 (-2.84, -1.78) | 0.479** | |
LP ∝ LT | 168 | 1.82 (1.62, 2.05) | -4.12 (-4.91, -3.32) | 0.417** | |
落叶林 Deciduous forest | LL ∝ LT | 49 | 0.97 (0.95, 1.00) | 0.04 (-0.03, 0.11) | 0.994** |
LB ∝ LT | 45 | 1.46 (1.22, 1.75) | -2.86 (-3.73, -1.99) | 0.652** | |
LP ∝ LT | 26 | 1.51 (1.11, 2.05) | -3.26 (-4.90, -1.63) | 0.450** | |
常绿林+落叶林 Evergreen forest + deciduous forest | LL ∝ LT | 265 | 0.96 (0.94, 0.99) | -0.01 (-0.11, 0.08) | 0.948** |
LB ∝ LT | 258 | 1.61 (1.50, 1.74) | -3.11 (-3.55, -2.67) | 0.632** | |
LP ∝ LT | 205 | 1.84 (1.66, 2.04) | -4.21 (-4.90, -3.51) | 0.449** |
表3 不同林型不同组分凋落物量与总凋落物量之间的RMA分析
Table 3 RMA analysis between litterfall production of different components and total litterfall production in different forest types
林型 Forest type | 组分对比 Component comparison | 样本量 n | α (95%置信区间) α (95% confidence interval) | logβ (95%置信区间) logβ (95% confidence interval) | R2 |
---|---|---|---|---|---|
常绿林 Evergreen forest | LL ∝ LT | 203 | 1.05 (1.01, 1.09) | -0.36 (-0.51, -0.21) | 0.922** |
LB ∝ LT | 200 | 1.41 (1.28, 1.56) | -2.31 (-2.84, -1.78) | 0.479** | |
LP ∝ LT | 168 | 1.82 (1.62, 2.05) | -4.12 (-4.91, -3.32) | 0.417** | |
落叶林 Deciduous forest | LL ∝ LT | 49 | 0.97 (0.95, 1.00) | 0.04 (-0.03, 0.11) | 0.994** |
LB ∝ LT | 45 | 1.46 (1.22, 1.75) | -2.86 (-3.73, -1.99) | 0.652** | |
LP ∝ LT | 26 | 1.51 (1.11, 2.05) | -3.26 (-4.90, -1.63) | 0.450** | |
常绿林+落叶林 Evergreen forest + deciduous forest | LL ∝ LT | 265 | 0.96 (0.94, 0.99) | -0.01 (-0.11, 0.08) | 0.948** |
LB ∝ LT | 258 | 1.61 (1.50, 1.74) | -3.11 (-3.55, -2.67) | 0.632** | |
LP ∝ LT | 205 | 1.84 (1.66, 2.04) | -4.21 (-4.90, -3.51) | 0.449** |
图3 不同林型不同组分凋落物量之间的线性关系。A, 常绿林。B, 落叶林。C, 常绿林+落叶林。LB, 枝凋落物; LL, 叶凋落物; LP, 繁殖器官凋落物。
Fig. 3 Linear relationships among litterfall production of different components in different forest types. A, Evergreen forest. B, Deciduous forest. C, Evergreen forest + deciduous forest. LB, branch litterfall; LL, leaf litterfall; LP, propagule litterfall.
林型 Forest type | 组分对比 Component comparison | 样本量 n | α (95%置信区间) α (95% confidence interval) | logβ (95%置信区间) logβ (95% confidence interval) | R2 |
---|---|---|---|---|---|
常绿林 Evergreen forest | LL ∝ LB | 200 | 0.74 (0.66, 0.84) | 1.36 (1.10, 1.62) | 0.305** |
LL ∝ LP | 168 | 0.57 (0.50, 0.65) | 2.03 (1.82, 2.24) | 0.236** | |
LB ∝ LP | 168 | 0.77 (0.68, 0.88) | 0.86 (0.58, 1.13) | 0.271** | |
落叶林 Deciduous forest | LL ∝ LB | 45 | 0.67 (0.55, 0.81) | 1.93 (1.66, 2.20) | 0.590** |
LL ∝ LP | 26 | 0.67 (0.48, 0.92) | 2.09 (1.63, 2.54) | 0.393** | |
LB ∝ LP | 26 | 0.98 (0.68, 1.40) | 0.31 (-0.44, 1.07) | 0.233* | |
常绿林+落叶林 Evergreen forest + deciduous forest | LL ∝ LB | 258 | 0.60 (0.55, 0.66) | 1.83 (1.67, 1.98) | 0.456** |
LL ∝ LP | 205 | 0.54 (0.48, 0.61) | 2.13 (1.96, 2.30) | 0.273** | |
LB ∝ LP | 205 | 0.84 (0.75, 0.94) | 0.67 (0.43, 0.92) | 0.346** |
表4 不同林型不同组分凋落物量之间的RMA分析
Table 4 RMA analysis among litterfall production of different components in different forest types
林型 Forest type | 组分对比 Component comparison | 样本量 n | α (95%置信区间) α (95% confidence interval) | logβ (95%置信区间) logβ (95% confidence interval) | R2 |
---|---|---|---|---|---|
常绿林 Evergreen forest | LL ∝ LB | 200 | 0.74 (0.66, 0.84) | 1.36 (1.10, 1.62) | 0.305** |
LL ∝ LP | 168 | 0.57 (0.50, 0.65) | 2.03 (1.82, 2.24) | 0.236** | |
LB ∝ LP | 168 | 0.77 (0.68, 0.88) | 0.86 (0.58, 1.13) | 0.271** | |
落叶林 Deciduous forest | LL ∝ LB | 45 | 0.67 (0.55, 0.81) | 1.93 (1.66, 2.20) | 0.590** |
LL ∝ LP | 26 | 0.67 (0.48, 0.92) | 2.09 (1.63, 2.54) | 0.393** | |
LB ∝ LP | 26 | 0.98 (0.68, 1.40) | 0.31 (-0.44, 1.07) | 0.233* | |
常绿林+落叶林 Evergreen forest + deciduous forest | LL ∝ LB | 258 | 0.60 (0.55, 0.66) | 1.83 (1.67, 1.98) | 0.456** |
LL ∝ LP | 205 | 0.54 (0.48, 0.61) | 2.13 (1.96, 2.30) | 0.273** | |
LB ∝ LP | 205 | 0.84 (0.75, 0.94) | 0.67 (0.43, 0.92) | 0.346** |
[1] | Aerts R (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724. |
[2] | Armeecin RB, Coseco WC (2012). Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass and Bioenergy, 46, 181-189. |
[3] | Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, Hildebrand P, Jiménez E, Patiño S, Penuela MC, Phillips OL, Stevenson P, Malhi Y (2010). Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 7, 43-55. |
[4] | Elliott KJ, Boring LR, Swank WT (2002). Aboveground biomass and nutrient accumulation 20 years after clear-cutting a southern Appalachian watershed. Canadian Journal of Forest Research, 32, 667-683. |
[5] | Enquist BJ, Brown JH, West GB (1998). Allometric scaling of plant energetics and population density. Nature, 395, 163-165. |
[6] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning across seed plants. Science, 295, 1517-1520.
DOI URL PMID |
[7] | Falster DS, Warton DI, Wright IJ (2006). User’s guide to SMATR: Standardized Major Axis Tests & Routines. http://www.bio.mq.edu.au/ecology/SMATR. Cited 9 Dec. 2012. |
[8] | Fang H, Mo JM (2006). Effects of nitrogen deposition on forest litter decomposition. Acta Ecologica Sinica, 26, 3127-3136. |
[9] |
Fang JY, Piao SL, Tang ZY, Peng CH, Ji W (2001). Interannual variability in net primary production and precipitation. Science, 293, 1723.
DOI URL PMID |
[10] | Guo JF, Xie JS, Lu HL, Liu DX, Yang YS, Chen GS (2004). Carbon return and dynamics of litterfall in natural forest and monoculture plantation of Castanopsis kawakamii in subtropical China. Forestry Studies in China, 6(1), 33-36. |
[11] | Guo JF, Yang YS, Chen GS, Lin P, Xie JS (2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-100. (in Chinese with English abstract) |
[ 郭建芬, 杨玉盛, 陈光水, 林鹏, 谢锦升 (2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.] | |
[12] | Guo W, Zhang J, Huang YM, Liu X, Wang W, Xue L (2009). Research progress on the influencing factors of forest litter. Journal of Anhui Agricultural Science, 37, 1544-1546. (in Chinese with English abstract) |
[ 郭伟, 张健, 黄玉梅, 刘旭, 王伟, 薛林 (2009). 森林凋落物影响因子研究进展. 安徽农业科学, 37, 1544-1546.] | |
[13] | Hossain M, Siddique MRH, Rahman MS, Hossain MZ, Hasan MM (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22, 577-582. |
[14] | Hu LZ, Chen DL, Zhu HL, Zhang YH, Ding BY (2011). Composition and dynamic of litterfall of evergreen broad-leaved forest in Baishanzu Mountain, Zhejiang. Journal of Zhejiang University (Agriculture & Life Sciences), 37, 533-539. (in Chinese with English abstract) |
[ 胡灵芝, 陈德良, 朱慧玲, 张永华, 丁炳扬 (2011). 百山祖常绿阔叶林凋落物凋落节律及组成. 浙江大学学报(农业与生命科学版), 37, 533-539.] | |
[15] | Kamruzzaman M, Sharma S, Rafiqul Hoque ATM, Hagihara A (2012). Litterfall of three subtropical mangrove species in the family Rhizophoraceae. Journal of Oceanography, 68, 841-850. |
[16] | Köhler L, Hölscher D, Leuschner C (2008). High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecology, 199, 163-173. |
[17] | Li CP, Li G, Xiao CW (2007). The application of allometric relationship in biomass estimation in terrestrial ecosystems. World Sci-Tech R&D, 29(2), 51-57. (in Chinese with English abstract) |
[ 李春萍, 李刚, 肖春旺 (2007). 异速生长关系在陆地生态系统生物量估测中的应用. 世界科技研究与发展, 29(2), 51-57.] | |
[18] | Lin B, Liu Q, Wu Y, He H (2004). Advances in the studies of forest litter. Chinese Journal of Ecology, 23(1), 60-65. (in Chinese with English abstract) |
[ 林波, 刘庆, 吴彦, 何海 (2004). 森林凋落物研究进展. 生态学杂志, 23(1), 60-64.] | |
[19] | Liu CJ, Livesniemi H, Berg B, Kutsch W, Yang YS, Ma XQ, Westman CJ (2003). Aboveground litterfall in Eurasian forests. Journal of Forestry Research, 14, 27-34. |
[20] | Liu CJ, Westman CJ, Berg B, Kutsch W, Wang GZ, Man RZ, Llvesniemi H (2004). Variation in litterfall- climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114. |
[21] | Li Y, Li HT, Jin DM, Sun SC (2007). Application of WBE model to ecology: a review. Acta Ecologica Sinica, 27, 3018-3031. (in Chinese with English abstract) |
[ 李妍, 李海涛, 金冬梅, 孙书存 (2007). WBE模型及其在生态学中的应用: 研究概述. 生态学报, 27, 3018-3031. ] | |
[22] | Lonsdale WM (1988). Predicting the amount of litterfall in forests of the world. Annals of Botany, 61, 319-324. |
[23] | Luo TX (1996). Patterns of Net Primary Productivity for Chines Major Forest Types and Their Mathematical Models. PhD dissertation, The Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences, Beijing. 28. (in Chinese) |
[ 罗天祥 (1996). 中国主要森林类型生物生产力格局及其数学模型. 博士学位论文, 中国科学院国家计划委员会自然资源综合考察委员会, 北京. 28.] | |
[24] | Ni J, Zhang XS, Scurlock JMO (2001). Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science, 58, 351-384. |
[25] |
Niklas KJ (2004). Plant allometry: Is there a grand unifying theory? Biological Reviews of the Cambridge Philosophical Society, 79, 871-889.
DOI URL PMID |
[26] |
Niklas KJ, Cobb ED (2008). Evidence for “diminishing returns” from the scaling of stem diameter and specific leaf area. American Journal of Botany, 95, 549-557.
DOI URL PMID |
[27] | Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927. |
[28] | Ning XB, Xiang WH, Wang GJ, Fang X, Yan WD, Deng XW (2009). Litterfall production and dynamic for twenty years of a successive replanting Cunninghamia lanceolata plantation at Huitong, Hu’nan. Acta Ecologica Sinica, 29, 5122-5129. (in Chinese with English abstract) |
[ 宁晓波, 项文化, 王光军, 方晰, 闫文德, 邓湘雯 (2009). 湖南会同连作杉木林凋落物量20年动态特征. 生态学报, 29, 5122-5129.] | |
[29] | Peng GQ, Cui X, Wu CC, Yang DM (2011). The quantity and seasonal dynamic of forest litterfall of Abies faxoniana community along the altitudinal gradients. Shanxi Forest Science and Technology, 14(4), 1-4. (in Chinese with English abstract) |
[ 彭国全, 崔汛, 吴成春, 杨冬梅 (2011). 不同海拔岷江冷杉林凋落物量及其季节动态变化研究. 陕西林业科技, 14(4), 1-4.] | |
[30] | Pérez-Suárez M, Arredondo-Moreno JT, Huber-Sánnwald E, Vargas-Hernandez JJ (2009). Production and quality of senesced and green litterfall in a pine-oak forest in central-northwest Mexico. Forest Ecology and Man-agement, 258, 1307-1315. |
[31] | Schuur EAG (2003). Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology, 84, 1165-1170. |
[32] | Shaiek O, Loustau D, Trichet P, Meredieu C, Bachtobji B, Garchi S, Aouni MHEL (2011). Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Annals of Forest Science, 68, 443-452. |
[33] | Subedi MR, Sharma RP (2012). Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal. Biomass and Bioenergy, 47, 44-49. |
[34] | Tang JW, Cao M, Zhang JH, Li MH (2010). Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant and Soil, 335, 271-288. |
[35] | Wang FY (1989). Review on the study of forest litterfall. Advances in Ecology, 6(2), 82-89. (in Chinese with English abstract) |
[ 王凤友 (1989). 森林凋落量研究综述. 生态学进展, 6(2), 82-89.] | |
[36] | Wang SL, Chen CY (1989). Ecology of Forest Detritus. Science Press, Beijing. 14. (in Chinese) |
[ 汪思龙, 陈楚莹 (2010). 森林残落物生态学. 科学出版社, 北京. 14.] | |
[37] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[38] |
Yang WQ, Wang KY, Kellomaki S, Zhang J (2006). Annual and monthly variations in litter macronutrients of three subalpine forests in Western China. Pedosphere, 16, 788-798.
DOI URL |
[39] |
Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012). Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 487, 472-476.
DOI URL |
[40] | Zhou RQ (2011). Formation process and nutrients form of litter fall of mangrove. Journal of Guangxi Academy of Sciences, 27(1), 62-64. (in Chinese with English abstract) |
[ 周如琼 (2011). 红树林凋落物产生过程及其营养物质形式研究概述. 广西科学院学报, 27(1), 62-64.] | |
[41] |
Zianis D, Mencuccini M (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187, 311-332.
DOI URL |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[7] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[8] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[9] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[10] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[11] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[12] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[13] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[14] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[15] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19